A facile strategy for synthesizing isosorbide-based polyurethane structural adhesives and core–shell rubber

Baek, D. Y., Sim, K. B. & Kim, H. J. Mechanical characterization of core-shell rubber/epoxy polymers for automotive structural adhesives as a function of operating temperature. Polymers 13, 734. https://doi.org/10.3390/polym13050734 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lee, H. R. et al. The effect of nano functionalized block copolymer addition on the joint strength of structural epoxy adhesive for car body assembly. J. Weld. Join. 33, 44–49. https://doi.org/10.5781/JWJ.2015.33.4.44 (2015).Article 

Google Scholar 
Kim, D. Y. et al. Effect of molecular weight of polyurethane toughening agent on adhesive strength and rheological characteristics of automotive structural adhesives. Int. J. Adhes. Adhes. 74, 21–27. https://doi.org/10.1016/j.ijadhadh.2016.12.006 (2017).Article 
CAS 

Google Scholar 
Ruan, M., Luan, H., Wang, G. & Shen, M. Bio-polyols synthesized from bio-based 1,3-propanediol and applications on polyurethane reactive hot melt adhesives. Ind. Crops Prod. 128, 436–444. https://doi.org/10.1016/j.indcrop.2018.11.045 (2019).Article 
CAS 

Google Scholar 
Borrero-López, A. M. et al. Toward UV-triggered curing of solvent-free polyurethane adhesives based on castor oil. ACS Sustain. Chem. Eng. 9, 11032–11040. https://doi.org/10.1021/acssuschemeng.1c02461 (2021).Article 
CAS 

Google Scholar 
Alfonso, A. T., Sánchez, M. C. & Franco, J. M. Preparation, characterization and mechanical properties of bio-based polyurethane adhesives from isocyanate-functionalized cellulose acetate and castor oil for bonding wood. Polymers 9, 132. https://doi.org/10.3390/polym9040132 (2017).Article 
CAS 

Google Scholar 
Tavares, L. B. et al. Bio-based polyurethane prepared from Kraft lignin and modified castor oil. Express Polym. Lett. 10, 927–940. https://doi.org/10.3144/expresspolymlett.2016.86 (2016).Article 
CAS 

Google Scholar 
Zain, N. M., Roslin, E. N. & Ahmad, S. Preliminary study on bio-based polyurethane adhesive/aluminum laminated composites for automotive applications. Int. J. Adhes. Adhes. 71, 1–9. https://doi.org/10.1016/j.ijadhadh.2016.08.001 (2016).Article 
CAS 

Google Scholar 
Haschick, R., Mueller, K., Klapper, M. & Muellen, K. Nonaqueous emulsions as a tool for particles with unique core-shell topologies. Macromolecules https://doi.org/10.1021/ma800550z (2008).Article 

Google Scholar 
Li, S., Wu, Q., Zhu, H., Lin, Q. & Wang, C. Impact resistance enhancement by adding core-shell particle to epoxy resin modified with hyperbranched polymer. Polymers 9, 684. https://doi.org/10.3390/polym9120684 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Javni, I., Petrovic, Z. D., Guo, A. & Rachel, F. Thermal stability of polyurethane based vegetables oils. J. Appl. Polym. Sci. 77, 1723–1734 (2000).Article 
CAS 

Google Scholar 
Park, J. H. et al. Resistance to cleavage of core-shell rubber/epoxy composite foam adhesive under impact wedge-peel condition for automobile structural adhesive. Polymer 11, 152. https://doi.org/10.3390/polym11010152 (2019).Article 
CAS 

Google Scholar 
Antonino, L. D. et al. Effects of core–shell and reactive liquid rubbers incorporation on practical adhesion and fracture energy of epoxy adhesives. Iran. Polym. J. 30, 1329–1338. https://doi.org/10.1007/s13726-021-00976-z (2021).Article 
CAS 

Google Scholar 
Qian, J. Y., Pearson, R. A., Dimonie, V. L. & El-Aasser, M. S. Synthesis and application of core–shell particles as toughening agents for epoxies. J. Appl. Polym. Sci. 58, 439–448. https://doi.org/10.1002/app.1995.070580222 (1995).Article 
CAS 

Google Scholar 
Petrović, Z. S. & Ferguson, J. Polyurethane elastomers. Prog. Polym. Sci. 16(5), 695–836. https://doi.org/10.1016/0079-6700(91)90011-9 (1991).Article 

Google Scholar 
Giannakopoulos, G., Masania, K. & Taylor, A. Toughening of epoxy using core-shell particles. J. Mater. Sci. 46, 327–338. https://doi.org/10.1007/s10853-010-4816-6 (2010).Article 
ADS 
CAS 

Google Scholar 
Lin, S. P., Han, J. L., Yeh, J. T., Chang, F. C. & Hsieh, K. H. Composites of UHMWPE fiber reinforced PU/epoxy grafted interpenetrating polymer networks. Eur. Polym. J. 43, 996–1008. https://doi.org/10.1016/j.eurpolymj.2006.12.001 (2007).Article 
CAS 

Google Scholar 
Mousavi, S. R. et al. Toughenig of epoxy resin systems using core-shell rubber particles: A literature review. J. Mater. Sci. 56, 18345–18367. https://doi.org/10.1007/s10853-021-06329-8 (2021).Article 
ADS 
CAS 

Google Scholar 
Park, C. Y. Effect of PPG, MDI, 2-HEMA and butyl acrylate content on the properties of polyurethane adhesive. Elastomers Compos. 49, 245–252. https://doi.org/10.7473/EC.2014.49.3.245 (2014).Article 
CAS 

Google Scholar 
Kong, X. H., Liu, G. G. & Curtis, J. M. Characterization of canola oil based polyurethane wood adhesives. Int. J. Adhes. Adhes. 31(6), 559–564. https://doi.org/10.1016/j.ijadhadh.2011.05.004 (2011).Article 
CAS 

Google Scholar 
Lee, C. S., Ooi, T. L. & Chuan, C. H. Synthesis of palm oil-based diethanolamides. J. Am. Oil Chem. Soc. 84, 945–952. https://doi.org/10.1007/s11746-007-1123-8 (2007).Article 
CAS 

Google Scholar 
Calpena, E. O., Aís, F. A., Torró-Palau, A. M., Parreño, E. M. & Barceló, C. O. Synthesis of polyurethanes from CO2-based polyols: A challenge for sustainable adhesives. Int. J. Adhes. Adhes. 67, 63–68. https://doi.org/10.1016/j.ijadhadh.2015.12.027 (2016).Article 
CAS 

Google Scholar 
Kim, I. T., Joo, S. H. & Oh, J. S. Trends of Eco-friendly Polyurethane and Fillers. J. Adhes. Interface. 20, 116–126. https://doi.org/10.17702/jai.2019.20.3.116 (2019).Article 

Google Scholar 
Velde, N. V. et al. Bio-based epoxy adhesives with lignin-based aromatic monophenols replacing bisphenol A. Polymers 13, 3879. https://doi.org/10.3390/polym13223879 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Deka, H. & Karak, N. Bio-based hyperbranched polyurethane/clay nanocomposites: Adhesive, mechanical, and thermal properties. Polym. Adv. Technol. 22, 973–980. https://doi.org/10.1002/pat.1603 (2011).Article 
CAS 

Google Scholar 
Tavares, L. B. et al. Bio-based polyurethane prepared from Kraft lignin and modified castor oil. Express Polym. Lett. 10, 927–940. https://doi.org/10.3144/expresspolymlett.2016.86 (2017).Article 
CAS 

Google Scholar 
Jo, Y. J., Choi, S. H. & Lee, E. Y. Production of biopolyols, bioisocyanates and biopolyurethanes from renewable biomass. Appl. Chem. Eng. 24, 579–586. https://doi.org/10.14478/ace.2013.1081 (2013).Article 
CAS 

Google Scholar 
Cywar, R. M., Rorrer, N. A., Hoyt, C. B., Beckham, G. T. & Echen, E. Y. X. Bio-based polymers with performance-advantaged properties. Nat. Rev. Mater. 7, 83–103. https://doi.org/10.1038/s41578-021-00363-3 (2022).Article 
ADS 
CAS 

Google Scholar 
Pan, X., Tian, Y., Li, J., Tan, Q. & J, Ren.,. Bio-based polyurethane reactive hot-melt adhesives derived from isosorbide-based polyester polyols with different carbon chain lengths. Chem. Eng. Sci. 264, 118152. https://doi.org/10.1016/j.ces.2022.118152 (2022).Article 
CAS 

Google Scholar 
Li, L., Wang, M., Wu, X., Yi, W. & Xiao, Q. Bio-based polyurethane nanocomposite thin coatings from two comparable POSS with eight same vertex groups for controlled release urea. Sci. Rep. 11, 9917. https://doi.org/10.1038/s41598-021-89254-9 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kim, D. Y., Kim, S. C., Park, Y. I., Kim, Y. C. & Lim, C. S. The physical properties analysis of epoxy resins incorporated with toughening agents. J. Adhes. Interface. 16, 101–106. https://doi.org/10.17702/jai.2015.16.3.101 (2015).Article 

Google Scholar 
Liu, Y. et al. Preparation of waterborne polyurethane with high solid content and elasticity. J. Polym. Res. 26, 146. https://doi.org/10.1007/s10965-019-1795-4 (2019).Article 
CAS 

Google Scholar 
Zia, K. M., Barikani, M., Zuber, M., Bhatti, I. A. & Sheikh, M. A. Molecular engineering of chitin based polyurethane elastomers. Carbohydr. Polym. 74, 149–158. https://doi.org/10.1016/j.carbpol.2008.03.013 (2008).Article 
CAS 

Google Scholar 
Sadeghi, M., Semsarzadeh, M. A., Barikani, M. & Ghalei, B. The effect of urethane and urea content on the gas permeation properties of poly(urethane-urea) membranes. J. Membr. Sci. 354, 40–47. https://doi.org/10.1016/j.memsci.2010.02.070 (2010).Article 
CAS 

Google Scholar 
Kang, S. H. et al. Toughening epoxy resins with core-shell (HTPB-PMMA/PMA) rubber particles. J. Nanosci. Nanotechnol. 17, 7429–7435. https://doi.org/10.1166/jnn.2017.14781 (2017).Article 
CAS 

Google Scholar 
Zhu, Z., Li, R., Zhang, C. & Gong, S. Preparation and properties of high solid content and low viscosity waterborne polyurethane—acrylate emulsion with a reactive emulsifier. Polymers 10, 154. https://doi.org/10.3390/polym10020154 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, S. F., Wang, R. M., He, Y. F., Song, P. F. & Wu, Z. M. Waterborne polyurethane-acrylic copolymers crosslinked core–shell nanoparticles for humidity-sensitive coatings. Prog. Org. Coat. 76, 729–735. https://doi.org/10.1016/j.porgcoat.2013.01.003 (2013).Article 
CAS 

Google Scholar 
Choi, W. C., Lee, W. K. & Ha, C. S. Low-viscosity UV-curable polyurethane acrylates containing dendritic acrylates for coating metal sheets. J. Coat. Technol. Res. 16, 377–385. https://doi.org/10.1007/s11998-018-0117-9 (2018).Article 
CAS 

Google Scholar 
Saxon, D. J., Luke, A. M., Sajjad, H., Tolman, W. B. & Reineke, T. M. Next-generation polymers: Isosorbide as a renewable alternative. Prog. Polym. Sci. 101, 101196. https://doi.org/10.1016/j.progpolymsci.2019.101196 (2020).Article 
CAS 

Google Scholar 
Besse, V. et al. Synthesis of isosorbide based polyurethanes: An isocyanate free method. React. Funct. Polym. 73, 588–594. https://doi.org/10.1016/j.reactfunctpolym.2013.01.002 (2013).Article 
CAS 

Google Scholar 
Chen, M. et al. Ren Synthesis of renewable isosorbide-based polyurethane acrylate resins for UV-cured coating with adjustable properties. Prog. Org. Coat. 182, 107695. https://doi.org/10.1016/j.porgcoat.2023.107695 (2023).Article 
CAS 

Google Scholar 
Kim, H. N., Lee, D. W., Ryu, H., Song, G. S. & Lee, D. S. Preparation and characterization of isosorbide-based self-healable polyurethane elastomers with thermally reversible bonds. Molecules 24, 1061. https://doi.org/10.3390/molecules24061061 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lee, J. Y., Chin, I. J. & Choi, H. J. Effect of particle size and crosslinking on the toughening of core-shell-type rubber-modified poly(lactic acid) composites. Polym. Test. 65, 440–449. https://doi.org/10.1016/j.polymertesting.2017.12.028 (2018).Article 
CAS 

Google Scholar 
Haehnle, B., Schuster, P. A., Chen, L. & Kuehne, A. J. C. All-conjugated polymer core-shell and core–shell–shell particles with tunable emission profiles and white light emission. Small. 17, 2101411. https://doi.org/10.1002/smll.202101411 (2021).Article 
CAS 

Google Scholar 
Ramli, R. A., Laftah, W. A. & Hashim, S. Core–shell polymers: A review. RSC Adv. 3, 15543–15565. https://doi.org/10.1039/C3RA41296B (2013).Article 
ADS 
CAS 

Google Scholar 
Mousavi, S. R. et al. Toughening of epoxy resin systems using core–shell rubber particles: A literature review. J. Mater. Sci. 56, 18345–18367. https://doi.org/10.1007/s10853-021-06329-8 (2021).Article 
ADS 
CAS 

Google Scholar 

Hot Topics

Related Articles