Reaction-induced unsaturated Mo oxycarbides afford highly active CO2 conversion catalysts

Song, K. S., Fritz, P. W. & Coskun, A. Porous organic polymers for CO2 capture, separation and conversion. Chem. Soc. Rev. 51, 9831–9852 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bai, S. T. et al. Homogeneous and heterogeneous catalysts for hydrogenation of CO2 to methanol under mild conditions. Chem. Soc. Rev. 50, 4259–4298 (2021).Article 
CAS 
PubMed 

Google Scholar 
Velty, A. & Corma, A. Advanced zeolite and ordered mesoporous silica-based catalysts for the conversion of CO2 to chemicals and fuels. Chem. Soc. Rev. 52, 1773–1946 (2023).Article 
CAS 
PubMed 

Google Scholar 
Zhai, P. et al. Highly tunable selectivity for syngas-derived alkenes over zinc and sodium-modulated Fe5C2 catalyst. Angew. Chem. Int. Ed. 55, 9902–9907 (2016).Article 
CAS 

Google Scholar 
Omae, I. Recent developments in carbon dioxide utilization for the production of organic chemicals. Coord. Chem. Rev. 256, 1384–1405 (2012).Article 
CAS 

Google Scholar 
Chen, X. D. et al. Catalytic performance of the Pt/TiO2 catalysts in reverse water gas shift reaction: controlled product selectivity and a mechanism study. Catal. Today 281, 312–318 (2017).Article 
CAS 

Google Scholar 
Li, X. et al. Controlling CO2 hydrogenation selectivity by metal-supported electron transfer. Angew. Chem. Int. Ed. 59, 19983–19989 (2020).Article 
CAS 

Google Scholar 
Chen, X. et al. Theoretical insights and the corresponding construction of supported metal catalysts for highly selective CO2 to CO conversion. ACS Catal. 7, 4613–4620 (2017).Article 
CAS 

Google Scholar 
Du, P. et al. Single-atom-driven dynamic carburization over Pd1–FeOx catalyst boosting CO2 conversion. Chem 8, 3252–3262 (2022).Article 
CAS 

Google Scholar 
Shen, L., Xu, J., Zhu, M. & Han, Y.-F. Essential role of the support for nickel-based CO2 methanation catalysts. ACS Catal. 10, 14581–14591 (2020).Article 
CAS 

Google Scholar 
Li, Y. et al. Single-atom Co-N-C catalysts for high-efficiency reverse water-gas shift reaction. Appl. Catal. B 324, 122298 (2023).Article 
CAS 

Google Scholar 
Park, J.-N. & McFarland, E. W. A highly dispersed Pd–Mg/SiO2 catalyst active for methanation of CO2. J. Catal. 266, 92–97 (2009).Article 
CAS 

Google Scholar 
Zhu, Y. et al. Environment of metal–O–Fe bonds enabling high activity in CO2 reduction on single metal atoms and on supported nanoparticles. J. Am. Chem. Soc. 143, 5540–5549 (2021).Article 
CAS 
PubMed 

Google Scholar 
Li, S. et al. Tuning the CO2 hydrogenation selectivity of rhodium single-atom catalysts on zirconium dioxide with alkali Ions. Angew. Chem. Int. Ed. 62, e202218167 (2023).Article 
CAS 

Google Scholar 
Sengupta, S., Jha, A., Shende, P., Maskara, R. & Das, A. K. Catalytic performance of Co and Ni doped Fe-based catalysts for the hydrogenation of CO2 to CO via reverse water-gas shift reaction. J. Environ. Chem. Eng. 7, 102911 (2019).Article 
CAS 

Google Scholar 
Lu, J. et al. Ir single atoms and clusters supported on α-MoC as catalysts for efficient hydrogenation of CO2 to CO. Acta Phys. Chim. Sin. 39, 2302021 (2023).Article 

Google Scholar 
Zhang, X. et al. Highly dispersed copper over β-Mo2C as an efficient and stable catalyst for the reverse water gas shift (RWGS) reaction. ACS Catal. 7, 912–918 (2017).Article 
CAS 

Google Scholar 
Kunkel, C., Viñes, F. & Illas, F. Transition metal carbides as novel materials for CO2 capture, storage, and activation. Energy Environ. Sci. 9, 141–144 (2016).Article 
CAS 

Google Scholar 
Zhang, X. et al. Synergy between β-Mo2C nanorods and non-thermal plasma for selective CO2 reduction to CO. Chem 6, 3312–3328 (2020).Article 
CAS 

Google Scholar 
Deng, Y. et al. Molybdenum carbide: controlling the geometric and electronic structure of noble metals for the activation of O–H and C–H bonds. Acc. Chem. Res. 52, 3372–3383 (2019).Article 
CAS 
PubMed 

Google Scholar 
Wang, L. et al. Transition metal carbides: emerging CO2 hydrogenation catalysts, from recent advance to future exploration. Adv. Funct. Mater. 34, 2309850 (2023).Wang, H. et al. H2 production from methane reforming over molybdenum carbide catalysts: from surface properties and reaction mechanism to catalyst development. ACS Catal. 12, 15501–15528 (2022).Article 
CAS 

Google Scholar 
Baddour, F. G. et al. An exceptionally mild and scalable solution-phase synthesis of molybdenum carbide nanoparticles for thermocatalytic CO2 hydrogenation. J. Am. Chem. Soc. 142, 1010–1019 (2020).Article 
CAS 
PubMed 

Google Scholar 
Ahmadi Khoshooei, M. et al. An active, stable cubic molybdenum carbide catalyst for the high-temperature reverse water-gas shift reaction. Science 384, 540–546 (2024).Article 
CAS 
PubMed 

Google Scholar 
Sun, X. et al. In situ investigations on structural evolutions during the facile synthesis of cubic α-MoC1–x catalysts. J. Am. Chem. Soc. 144, 22589–22598 (2022).Article 
CAS 
PubMed 

Google Scholar 
Posada-Pérez, S. et al. The bending machine: CO2 activation and hydrogenation on δ-MoC(001) and β-Mo2C(001) surfaces. Phys. Chem. Chem. Phys. 16, 14912–14921 (2014).Article 
PubMed 

Google Scholar 
Zhang, J. et al. Defect-driven efficient selective CO2 hydrogenation with Mo-based clusters. JACS Au 3, 2736–2748 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, X. et al. A stable low-temperature H2-production catalyst by crowding Pt on α-MoC. Nature 589, 396–401 (2021).Article 
CAS 
PubMed 

Google Scholar 
Sullivan, M. M. & Bhan, A. Effects of oxygen coverage on rates and selectivity of propane-CO2 reactions on molybdenum carbide. J. Catal. 357, 195–205 (2018).Article 

Google Scholar 
Lezcano-González, I. et al. Molybdenum speciation and its impact on catalytic activity during methane dehydroaromatization in zeolite ZSM-5 as revealed by operando X-ray methods. Angew. Chem. Int. Ed. 55, 5215–5219 (2016).Article 

Google Scholar 
Yang, M. et al. Probing the nature of zinc in copper-zinc-zirconium catalysts by operando spectroscopies for CO2 hydrogenation to methanol. Angew. Chem. Int. Ed. 62, e202216803 (2023).Article 
CAS 

Google Scholar 
Yu, J. et al.Facile synthesis of highly active Rh/Al2O3 steam reforming catalysts with preformed support by flame spray pyrolysis. Appl. Catal. B 198, 171–179 (2016).Article 
CAS 

Google Scholar 
Yao, S. et al. Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction. Science 357, 389–393 (2017).Article 
CAS 
PubMed 

Google Scholar 
Belgamwar, R. et al. Defects tune the strong metal-support interactions in copper supported on defected titanium dioxide catalysts for CO2 reduction. J. Am. Chem. Soc. 145, 8634–8646 (2023).Article 
CAS 

Google Scholar 
Liu, H. X. et al. Partially sintered copper–ceria as excellent catalyst for the high-temperature reverse water gas shift reaction. Nat. Commun. 13, 867 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yao, S. et al. Exploring metal–support interactions to immobilize subnanometer Co clusters on γ–Mo2N: a highly selective and stable catalyst for CO2 activation. ACS Catal. 9, 9087–9097 (2019).Article 
CAS 

Google Scholar 
Liang, B. et al. Promoting role of potassium in the reverse water gas shift reaction on Pt/mullite catalyst. Catal. Today 281, 319–326 (2017).Article 
CAS 

Google Scholar 
Zhang, X. et al. A novel Ni–MoCxOy interfacial catalyst for syngas production via the chemical looping dry reforming of methane. Chem 9, 102–116 (2023).Article 

Google Scholar 
Xin, H. et al. Overturning CO2 hydrogenation selectivity with high activity via reaction-induced strong metal–support interactions. J. Am. Chem. Soc. 144, 4874–4882 (2022).Article 
CAS 
PubMed 

Google Scholar 
Zhang, Z. S. et al. Intrinsically active surface in a Pt/γ-Mo2N catalyst for the water–gas shift reaction: molybdenum nitride or molybdenum oxide? J. Am. Chem. Soc. 142, 13362–13371 (2020).Article 
CAS 
PubMed 

Google Scholar 
Xu, J. P. et al. Multi-physics instrument: total scattering neutron time-of-flight diffractometer at China Spallation Neutron Source. Nucl. Instrum. Methods Phys. Res. A 1013, 165642 (2021).Article 
CAS 

Google Scholar 
Xu, J. et al. Physical design of multipurpose physics neutron diffractometer for the CSNS. Nucl. Instrum. Methods Phys. Res. A 927, 161–168 (2019).Article 
CAS 

Google Scholar 
Kammert, J. et al. Nature of reactive hydrogen for ammonia synthesis over a Ru/C12A7 electride catalyst. J. Am. Chem. Soc. 142, 7655–7667 (2020).Article 
CAS 
PubMed 

Google Scholar 
Yu, X. et al. Neutron scattering studies of heterogeneous catalysis. Chem. Rev. 123, 8638–8700 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Su, X., Yang, X., Zhao, B. & Huang, Y. Designing of highly selective and high-temperature endurable RWGS heterogeneous catalysts: recent advances and the future directions. J. Energy Chem. 26, 854–867 (2017).Article 

Google Scholar 
Zhang, Z. et al. Tailored metastable Ce–Zr oxides with highly distorted lattice oxygen for accelerating redox cycles. Chem. Sci. 9, 3386–3394 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yu, J. et al. Stabilizing Cu+ in Cu/SiO2 catalysts with a Shattuckite-like structure boosts CO2 hydrogenation into methanol. ACS Catal. 10, 14694–14706 (2020).Article 
CAS 

Google Scholar 
Sun, X. et al. Controlling phase transfer of molybdenum carbides by various metals for highly efficient hydrogen production. J. Energy Chem. 62, 191–197 (2021).Article 
CAS 

Google Scholar 
Toby, B. H. EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 34, 210–213 (2001).Article 
CAS 

Google Scholar 
Haisheng, Y. et al. The XAFS beamline of SSRF. Nucl. Sci. Tech. 05, 6–12 (2015).
Google Scholar 
Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).Article 
CAS 
PubMed 

Google Scholar 
Emery, A. A. & Wolverton, C. High-throughput DFT calculations of formation energy, stability and oxygen vacancy formation energy of ABO3 perovskites. Sci. Data 4, 170153 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles