Radical-triggered translocation of C–C double bond and functional group

Cernak, T. et al. The medicinal chemist’s toolbox for late stage functionalization of drug-like molecules. Chem. Soc. Rev. 45, 546–576 (2016).Article 
CAS 
PubMed 

Google Scholar 
Wencel-Delord, J. & Glorius, F. C–H bond activation enables the rapid construction and late-stage diversification of functional molecules. Nat. Chem. 5, 369–375 (2013).Article 
CAS 
PubMed 

Google Scholar 
Yamaguchi, J., Yamaguchi, A. D. & Itami, K. C–H bond functionalization: emerging synthetic tools for natural products and pharmaceuticals. Angew. Chem. Int. Ed. 51, 8960–9009 (2012).Article 
CAS 

Google Scholar 
McMurray, L., O’Hara, F. & Gaunt, M. J. Recent developments in natural product synthesis using metal-catalysed C–H bond functionalisation. Chem. Soc. Rev. 40, 1885–1898 (2011).Article 
CAS 
PubMed 

Google Scholar 
Lam, N. Y. S., Wu, K. & Yu, J.-Q. Advancing the logic of chemical synthesis: C–H activation as strategic and tactical disconnections for C–C bond construction. Angew. Chem. Int. Ed. 60, 15767–15790 (2021).Article 
CAS 

Google Scholar 
Shi, F. & Larock, R. C. in C-H Activation (eds Yu, J.-Q. & Shi, Z.) 123–164 (Springer Berlin Heidelberg, 2010).Sommer, H. et al. Walking metals for remote functionalization. ACS Cent. Sci. 4, 153–165 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, W. et al. Distal radical migration strategy: an emerging synthetic means. Chem. Soc. Rev. 47, 654–667 (2018).Article 
CAS 
PubMed 

Google Scholar 
Schwarz, H. Remote functionalization of C–H and C–C bonds by “naked” transition-metal ions (Cosi Fan Tutte). Acc. Chem. Res. 22, 282–287 (1989).Article 
CAS 

Google Scholar 
Wu, X. & Zhu, C. Radical-mediated remote functional group migration. Acc. Chem. Res. 53, 1620–1636 (2020).Article 
CAS 
PubMed 

Google Scholar 
Qiu, G. & Wu, J. Transition metal-catalyzed direct remote C–H functionalization of alkyl groups via C(sp3)–H bond activation. Org. Chem. Front. 2, 169–178 (2015).Article 
CAS 

Google Scholar 
Wolff, M. E. Cyclization of N-halogenated amines (the Hofmann–Löffler reaction). Chem. Rev. 63, 55–64 (1963).Article 
CAS 

Google Scholar 
Choi, G. J. et al. Catalytic alkylation of remote C–H bonds enabled by proton-coupled electron transfer. Nature 539, 268–271 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chu, J. C. K. & Rovis, T. Amide-directed photoredox-catalysed C–C bond formation at unactivated sp3 C–H bonds. Nature 539, 272–275 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Stateman, L. M., Nakafuku, K. M. & Nagib, D. A. Remote C–H functionalization via selective hydrogen atom transfer. Synthesis 50, 1569–1586 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Guo, W., Wang, Q. & Zhu, J. Visible light photoredox-catalysed remote C–H functionalisation enabled by 1,5-hydrogen atom transfer (1,5-HAT). Chem. Soc. Rev. 50, 7359–7377 (2021).Article 
CAS 
PubMed 

Google Scholar 
Friese, F. W., Mück-Lichtenfeld, C. & Studer, A. Remote C–H functionalization using radical translocating arylating groups. Nat. Commun. 9, 2808 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Morcillo, S. P. et al. Photoinduced remote functionalization of amides and amines using electrophilic nitrogen radicals. Angew. Chem. Int. Ed. 57, 12945–12949 (2018).Article 
CAS 

Google Scholar 
Matsushita, K. et al. Ester dance reaction on the aromatic ring. Sci. Adv. 6, eaba7614 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wu, Z. et al. Carbonyl 1,2-transposition through triflate-mediated α-amination. Science 374, 734–740 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhao, G. et al. Expanding reaction profile of allyl carboxylates via 1,2-radical migration (RaM): visible-light-induced phosphine-catalyzed 1,3-carbobromination of allyl carboxylates. J. Am. Chem. Soc. 145, 8275–8284 (2023).Article 
CAS 

Google Scholar 
Yao, W. et al. Excited-state palladium-catalyzed radical migratory Mizoroki–Heck reaction enables C2-alkenylation of carbohydrates. J. Am. Chem. Soc. 144, 3353–3359 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, K. et al. Functional group translocation of cyano groups by reversible C–H sampling. Nature 620, 1007–1012 (2023).Article 
CAS 
PubMed 

Google Scholar 
Nicolaou, K. C., Bulger, P. G. & Sarlah, D. Metathesis reactions in total synthesis. Angew. Chem. Int. Ed. 44, 4490–4527 (2005).Article 
CAS 

Google Scholar 
Grubbs, R. H. & Chang, S. Recent advances in olefin metathesis and its application in organic synthesis. Tetrahedron 54, 4413–4450 (1998).Article 
CAS 

Google Scholar 
Bhawal, B. N. & Morandi, B. Catalytic isofunctional reactions—expanding the repertoire of shuttle and metathesis reactions. Angew. Chem. Int. Ed. 58, 10074–10103 (2019).Article 
CAS 

Google Scholar 
Bhawal, B. N. & Morandi, B. Shuttle catalysis—new strategies in organic synthesis. Chem. Eur. J. 23, 12004–12013 (2017).Article 
CAS 
PubMed 

Google Scholar 
McDonald, R. I., Liu, G. & Stahl, S. S. Palladium(II)-catalyzed alkene functionalization via nucleopalladation: stereochemical pathways and enantioselective catalytic applications. Chem. Rev. 111, 2981–3019 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yin, G., Mu, X. & Liu, G. Palladium(II)-catalyzed oxidative difunctionalization of alkenes: bond forming at a high-valent palladium center. Acc. Chem. Res. 49, 2413–2423 (2016).Article 
CAS 
PubMed 

Google Scholar 
Sauer, G. S. & Lin, S. An electrocatalytic approach to the radical difunctionalization of alkenes. ACS Catal. 8, 5175–5187 (2018).Article 
CAS 

Google Scholar 
Wang, X. & Studer, A. Iodine(III) reagents in radical chemistry. Acc. Chem. Res. 50, 1712–1724 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jensen, K. H. & Sigman, M. S. Mechanistic approaches to palladium-catalyzed alkene difunctionalization reactions. Org. Biomol. Chem. 6, 4083–4088 (2008).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Martins, G. M. et al. A green approach: vicinal oxidative electrochemical alkene difunctionalization. ChemElectroChem 6, 1300–1315 (2019).Article 
CAS 

Google Scholar 
Li, Z.-L. et al. Recent advances in copper-catalysed radical-involved asymmetric 1,2-difunctionalization of alkenes. Chem. Soc. Rev. 49, 32–48 (2020).Article 
CAS 
PubMed 

Google Scholar 
Romero, R. M., Wöste, T. H. & Muñiz, K. Vicinal difunctionalization of alkenes with iodine(III) reagents and catalysts. Chem. Asian J. 9, 972–983 (2014).Article 
CAS 
PubMed 

Google Scholar 
Siu, J. C., Fu, N. & Lin, S. Catalyzing electrosynthesis: a homogeneous electrocatalytic approach to reaction discovery. Acc. Chem. Res. 53, 547–560 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wu, Z. et al. Multi-site programmable functionalization of alkenes via controllable alkene isomerization. Nat. Chem. 15, 988–997 (2023).Article 
CAS 
PubMed 

Google Scholar 
Stateman, L. M. et al. Aza-heterocycles via copper-catalyzed, remote C–H desaturation of amines. Chem 8, 210–224 (2022).Article 
CAS 
PubMed 

Google Scholar 
Wang, Z. et al. Ligand-controlled divergent dehydrogenative reactions of carboxylic acids via C–H activation. Science 374, 1281–1285 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, Z. et al. Remote desaturation of hexenenitriles by radical-mediated cyano migration. Tetrahedron 131, 133228 (2023).Article 
CAS 

Google Scholar 
Li, B. et al. Chemo-divergent cyano group migration: involving elimination and substitution of the key α-thianthrenium cyano species. Org. Lett. 25, 6633–6637 (2023).Article 
CAS 
PubMed 

Google Scholar 
Savile, C. K., Fabriàs, G. & Buist, P. H. Dihydroceramide Δ4 desaturase initiates substrate oxidation at C-4. J. Am. Chem. Soc. 123, 4382–4385 (2001).Article 
CAS 
PubMed 

Google Scholar 
Voica, A.-F. et al. Guided desaturation of unactivated aliphatics. Nat. Chem. 4, 629–635 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wu, X. et al. Tertiary-alcohol-directed functionalization of remote C(sp3)–H bonds by sequential hydrogen atom and heteroaryl migrations. Angew. Chem. Int. Ed. 57, 1640–1644 (2018).Article 
CAS 

Google Scholar 
Wu, X. et al. Radical-mediated rearrangements: past, present, and future. Chem. Soc. Rev. 50, 11577–11613 (2021).Article 
CAS 
PubMed 

Google Scholar 
Li, L. et al. A remote C–C bond cleavage–enabled skeletal reorganization: access to medium-/large-sized cyclic alkenes. Sci. Adv. 3, e1701487 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Li, L. et al. Radical aryl migration enables diversity-oriented synthesis of structurally diverse medium/macro- or bridged-rings. Nat. Commun. 7, 13852 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Li, Z.-L. et al. Radical-mediated 1,2-formyl/carbonyl functionalization of alkenes and application to the construction of medium-sized rings. Angew. Chem. Int. Ed. 55, 15100–15104 (2016).Article 
CAS 

Google Scholar 
Ma, Z., Wu, X. & Zhu, C. Merging fluorine incorporation and functional group migration. Chem. Rec. 23, e202200221 (2023).Article 
CAS 
PubMed 

Google Scholar 
Wei, Y., Wu, X. & Zhu, C. Radical heteroarylation of alkenes and alkanes via heteroaryl ­migration. Synlett 33, 1017–1028 (2022).Article 
CAS 

Google Scholar 
West, J. G., Huang, D. & Sorensen, E. J. Acceptorless dehydrogenation of small molecules through cooperative base metal catalysis. Nat. Commun. 6, 10093 (2015).Article 
PubMed 

Google Scholar 
Zhou, M.-J. et al. Site-selective acceptorless dehydrogenation of aliphatics enabled by organophotoredox/cobalt dual catalysis. J. Am. Chem. Soc. 143, 16470–16485 (2021).Article 
CAS 
PubMed 

Google Scholar 
Occhialini, G., Palani, V. & Wendlandt, A. E. Catalytic, contra-thermodynamic positional alkene isomerization. J. Am. Chem. Soc. 144, 145–152 (2022).Article 
CAS 
PubMed 

Google Scholar 
Chen, M. et al. Electrocatalytic allylic C–H alkylation enabled by a dual-function cobalt catalyst. Angew. Chem. Int. Ed. 61, e202115954 (2022).Article 
CAS 

Google Scholar 
Zhao, H. et al. Merging halogen-atom transfer (XAT) and cobalt catalysis to override E2-selectivity in the elimination of alkyl halides: a mild route toward contra-thermodynamic olefins. J. Am. Chem. Soc. 143, 14806–14813 (2021).Article 
CAS 
PubMed 

Google Scholar 
Weiss, M. E. et al. Cobalt-catalyzed coupling of alkyl iodides with alkenes: deprotonation of hydridocobalt enables turnover. Angew. Chem. Int. Ed. 50, 11125–11128 (2011).Article 
CAS 

Google Scholar 
Wang, S. et al. Site-selective amination towards tertiary aliphatic allylamines. Nat. Catal. 5, 642–651 (2022).Article 
CAS 

Google Scholar 
Wang, S. et al. Cobalt-catalysed allylic fluoroalkylation of terpenes. Nat. Synth. 2, 1202–1210 (2023).Article 

Google Scholar 
Buzzetti, L., Crisenza, G. E. M. & Melchiorre, P. Mechanistic studies in photocatalysis. Angew. Chem. Int. Ed. 58, 3730–3747 (2019).Article 
CAS 

Google Scholar 
Constantin, T. et al. Aminoalkyl radicals as halogen-atom transfer agents for activation of alkyl and aryl halides. Science 367, 1021–1026 (2020).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles