Reactive capture of CO2 via amino acid

Wen, G. et al. Continuous CO2 electrolysis using a CO2 exsolution-induced flow cell. Nat. Energy 7, 978–988 (2022).Article 
ADS 
CAS 

Google Scholar 
Ochedi, F. O., Yu, J., Yu, H., Liu, Y. & Hussain, A. Carbon dioxide capture using liquid absorption methods: a review. Environ. Chem. Lett. 19, 77–109 (2021).Article 
CAS 

Google Scholar 
Custelcean, R. Direct air capture of CO 2 using solvents. Annu. Rev. Chem. Biomol. Eng. 13, 217–234 (2022).Article 
CAS 
PubMed 

Google Scholar 
Rochelle, G. T. Amine scrubbing for CO 2 capture. Science 325, 1652–1654 (2009).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Alerte, T. et al. Downstream of the CO 2 electrolyzer: assessing the energy intensity of product separation. ACS Energy Lett. 6, 4405–4412 (2021).Article 
CAS 

Google Scholar 
Li, M., Irtem, E., Iglesias van Montfort, H.-P., Abdinejad, M. & Burdyny, T. Energy comparison of sequential and integrated CO2 capture and electrochemical conversion. Nat. Commun. 13, 5398 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Keith, D. W., Holmes, G., St. Angelo, D. & Heidel, K. A process for capturing CO2 from the atmosphere. Joule 2, 1573–1594 (2018).Article 
CAS 

Google Scholar 
Xu, Y. et al. Regeneration of direct air CO2 capture liquid via alternating electrocatalysis. Joule https://doi.org/10.1016/j.joule.2023.07.011 (2023).Stolaroff, J. K., Keith, D. W. & Lowry, G. V. Carbon dioxide capture from atmospheric air using sodium hydroxide spray. Environ. Sci. Technol. 42, 2728–2735 (2008).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Fu, L. et al. Research progress on CO2 capture and utilization technology. J. CO2 Utilization 66, 102260 (2022).Article 
CAS 

Google Scholar 
Medina-Martos, E. et al. Environmental and economic performance of carbon capture with sodium hydroxide. J. CO2 Utilization 60, 101991 (2022).Article 
CAS 

Google Scholar 
Li, Y. C. et al. CO 2 electroreduction from carbonate electrolyte. ACS Energy Lett. 4, 1427–1431 (2019).Article 
CAS 

Google Scholar 
Xiao, Y. C. et al. Direct carbonate electrolysis into pure syngas. EES Catal. 1, 54–61 (2023).Article 
CAS 

Google Scholar 
O’Brien, C. P. et al. CO 2 electrolyzers. Chem. Rev. 124, 3648–3693 (2024).Article 
PubMed 

Google Scholar 
Rabinowitz, J. A. & Kanan, M. W. The future of low-temperature carbon dioxide electrolysis depends on solving one basic problem. Nat. Commun. 11, 5231 (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ahmad, N. et al. Electrochemical CO2 reduction to CO facilitated by MDEA-based deep eutectic solvent in aqueous solution. Renew. Energy 177, 23–33 (2021).Article 
CAS 

Google Scholar 
Kim, J. H. et al. The insensitive cation effect on a single atom Ni catalyst allows selective electrochemical conversion of captured CO 2 in universal media. Energy Environ. Sci. 15, 4301–4312 (2022).Article 
CAS 

Google Scholar 
Langie, K. M. G. et al. Toward economical application of carbon capture and utilization technology with near-zero carbon emission. Nat. Commun. 13, 7482 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chi, S. & Rochelle, G. T. Oxidative degradation of monoethanolamine. Ind. Eng. Chem. Res. 41, 4178–4186 (2002).Article 
CAS 

Google Scholar 
Voice, A. K. & Rochelle, G. T. Oxidation of amines at absorber conditions for CO2 capture from flue gas. Energy Proc. 4, 171–178 (2011).Article 
CAS 

Google Scholar 
Yi, F., Zou, H.-K., Chu, G.-W., Shao, L. & Chen, J.-F. Modeling and experimental studies on absorption of CO2 by Benfield solution in rotating packed bed. Chem. Eng. J. 145, 377–384 (2009).Article 
CAS 

Google Scholar 
Almajed, H. M. et al. Closing the loop: unexamined performance trade-offs of integrating direct air capture with (bi)carbonate electrolysis. ACS Energy Lett. https://doi.org/10.1021/acsenergylett.4c00807 (2024).Feron, P. & Tenasbroek, N. Greenhouse Gas Control Technologies 7. vol. II. p. 1153–1158 (Elsevier, 2005).Xu, X. et al. Next generation amino acid technology for CO 2 capture. J. Mater. Chem. A 9, 1692–1704 (2021).Article 

Google Scholar 
Knuutila, H., Aronu, U. E., Kvamsdal, H. M. & Chikukwa, A. Post combustion CO2 capture with an amino acid salt. Energy Proc. 4, 1550–1557 (2011).Article 
CAS 

Google Scholar 
Jockenhövel, T. & Schneider, R. Towards commercial application of a second-generation post-combustion capture technology — Pilot plant validation of the siemens capture process and implementation of a first demonstration case. Energy Proc. 4, 1451–1458 (2011).Article 

Google Scholar 
Reichl, A. E., Schneider, R., Ohligschläger, A., Rogalinski, T. & Hauke, S. Process development and scale-up for post combustion carbon capture – validation with pilot plant operation. Energy Proc. 63, 6379–6392 (2014).Article 
CAS 

Google Scholar 
Ramezani, R., Mazinani, S. & Di Felice, R. State-of-the-art of CO 2 capture with amino acid salt solutions. Rev. Chem. Eng. 38, 273–299 (2022).Article 
CAS 

Google Scholar 
Gusnawan, P., Ganegamage, S., Heagy, M. & Yu, J. Reactive CO2 absorption mechanism of a soybean-based (SBB) solvent containing 18 amino acid salts in polyvinylidene fluoride (PVDF) hollow fiber membrane-based gas-liquid membrane contactor. Chem. Eng. J. 399, 125819 (2020).Article 
CAS 

Google Scholar 
Brethomé, F. M., Williams, N. J., Seipp, C. A., Kidder, M. K. & Custelcean, R. Direct air capture of CO2 via aqueous-phase absorption and crystalline-phase release using concentrated solar power. Nat. Energy 3, 553–559 (2018).Article 
ADS 

Google Scholar 
Last, G. V. & Schmick, M. T. Identification and Selection of Major Carbon Dioxide Stream Compositions. PNNL−20493, 1019211 http://www.osti.gov/servlets/purl/1019211-QRxIjN/ (2011).Lepaumier, H., Picq, D. & Carrette, P.-L. New amines for CO 2 capture. II. Oxidative degradation mechanisms. Ind. Eng. Chem. Res. 48, 9068–9075 (2009).Article 
CAS 

Google Scholar 
Sexton, A. J. & Rochelle, G. T. Reaction products from the oxidative degradation of monoethanolamine. Ind. Eng. Chem. Res. 50, 667–673 (2011).Article 
CAS 

Google Scholar 
Vega, F., Sanna, A., Navarrete, B., Maroto-Valer, M. M. & Cortés, V. J. Degradation of amine-based solvents in CO 2 capture process by chemical absorption: Degradation of amine-based solvents in CO 2 capture process by chemical absorption. Greenh. Gas. Sci. Technol. 4, 707–733 (2014).Article 
CAS 

Google Scholar 
Vevelstad, S. J., Eide-Haugmo, I., Da Silva, E. F. & Svendsen, H. F. Degradation of MEA; a theoretical study. Energy Proc. 4, 1608–1615 (2011).Article 
CAS 

Google Scholar 
Nguyen, T., Hilliard, M. & Rochelle, G. Volatility of aqueous amines in CO2 capture. Energy Proc. 4, 1624–1630 (2011).Article 
CAS 

Google Scholar 
Lee, G. et al. CO2 electroreduction to multicarbon products from carbonate capture liquid. Joule 7, 1277–1288 (2023).Article 
CAS 

Google Scholar 
Locke, M. J. & McIver, R. T. Effect of solvation on the acid/base properties of glycine. J. Am. Chem. Soc. 105, 4226–4232 (1983).Article 
CAS 

Google Scholar 
Vijay, S. et al. Unified mechanistic understanding of CO2 reduction to CO on transition metal and single atom catalysts. Nat. Catal. 4, 1024–1031 (2021).Article 
CAS 

Google Scholar 
Zhang, Z. et al. Porous metal electrodes enable efficient electrolysis of carbon capture solutions. Energy Environ. Sci. 15, 705–713 (2022).Article 
CAS 

Google Scholar 
Pimlott, D. J. D., Jewlal, A., Mowbray, B. A. W. & Berlinguette, C. P. Impurity-resistant CO 2 reduction using reactive carbon solutions. ACS Energy Lett. https://doi.org/10.1021/acsenergylett.3c00133 (2023).Ko, B. H. et al. The impact of nitrogen oxides on electrochemical carbon dioxide reduction. Nat. Commun. 11, 5856 (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jackson, M. N., Jung, O., Lamotte, H. C. & Surendranath, Y. Donor-dependent promotion of interfacial proton-coupled electron transfer in aqueous electrocatalysis. ACS Catal. 9, 3737–3743 (2019).Article 
CAS 

Google Scholar 
Resasco, J., Lum, Y., Clark, E., Zeledon, J. Z. & Bell, A. T. Effects of anion identity and concentration on electrochemical reduction of CO 2. ChemElectroChem 5, 1064–1072 (2018).Article 
CAS 

Google Scholar 
Leverick, G. et al. Uncovering the active species in amine-mediated CO 2 reduction to CO on Ag. ACS Catal. 13, 12322–12337 (2023).Article 
CAS 

Google Scholar 
Safipour, J., Weber, A. Z. & Bell, A. T. Detrimental effects of monoethanolamine and other amine-based capture agents on the electrochemical reduction of CO 2. ACS Energy Lett. 8, 5012–5017 (2023).Article 
CAS 

Google Scholar 
Siegel, R. E., Pattanayak, S. & Berben, L. A. Reactive capture of CO 2: opportunities and challenges. ACS Catal. 13, 766–784 (2023).Article 
CAS 

Google Scholar 
Jerng, S. E. & Gallant, B. M. Electrochemical reduction of CO2 in the captured state using aqueous or nonaqueous amines. iScience 25, 104558 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lee, G. et al. Electrochemical upgrade of CO2 from amine capture solution. Nat. Energy 6, 46–53 (2021).Article 
ADS 
CAS 

Google Scholar 
Su, F., Lu, C., Chen, H.-S. & Adsorption Desorption, and thermodynamic studies of CO 2 with high-amine-loaded multiwalled carbon nanotubes. Langmuir 27, 8090–8098 (2011).Article 
CAS 
PubMed 

Google Scholar 
Pérez-Gallent, E., Vankani, C., Sánchez-Martínez, C., Anastasopol, A. & Goetheer, E. Integrating CO 2 capture with electrochemical conversion using amine-based capture solvents as electrolytes. Ind. Eng. Chem. Res. 60, 4269–4278 (2021).Article 

Google Scholar 
Abas, N. & Khan, N. Carbon conundrum, climate change, CO2 capture and consumptions. J. CO2 Utilization 8, 39–48 (2014).Article 
CAS 

Google Scholar 
Shen, K. et al. On the origin of carbon sources in the electrochemical upgrade of CO2 from carbon capture solutions. Joule 7, 1260–1276 (2023).Article 
CAS 

Google Scholar 
Los, P., Rami, A. & Lasia, A. Hydrogen evolution reaction on Ni-Al electrodes. J. Appl. Electrochem. 23, 135–140 (1993).Gabardo, C. M. et al. Continuous carbon dioxide electroreduction to concentrated multi-carbon products using a membrane electrode assembly. Joule 3, 2777–2791 (2019).Article 
CAS 

Google Scholar 
Burdyny, T. & Smith, W. A. CO 2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions. Energy Environ. Sci. 12, 1442–1453 (2019).Article 
CAS 

Google Scholar 
Kutz, R. B. et al. Sustainion imidazolium‐functionalized polymers for carbon dioxide electrolysis. Energy Technol. 5, 929–936 (2017).Article 
CAS 

Google Scholar 
Kaczur, J. J., Yang, H., Liu, Z., Sajjad, S. D. & Masel, R. I. Carbon dioxide and water electrolysis using new alkaline stable anion membranes. Front. Chem. 6, 263 (2018).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Gao, T. et al. Techno-economic analysis and carbon footprint accounting for industrial CO 2 electrolysis systems. Energy Fuels 37, 17997–18008 (2023).Article 
CAS 

Google Scholar 
Buttler, A. & Spliethoff, H. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: a review. Renew. Sustain. Energy Rev. 82, 2440–2454 (2018).Article 
CAS 

Google Scholar 
Yang, Y. & Li, F. Reactor design for electrochemical CO2 conversion toward large-scale applications. Curr. Opin. Green Sustain. Chem. 27, 100419 (2021).Article 
CAS 

Google Scholar 
Crandall, B. S. et al. Kilowatt-scale tandem CO2 electrolysis for enhanced acetate and ethylene production. Nat. Chem. Eng. 1, 421–429 (2024).Article 

Google Scholar 
Custelcean, R. et al. Direct air capture of CO 2 with aqueous amino acids and solid bis-iminoguanidines (BIGs). Ind. Eng. Chem. Res. 58, 23338–23346 (2019).Article 
CAS 

Google Scholar 
Xu, Y. et al. Oxygen-tolerant electroproduction of C 2 products from simulated flue gas. Energy Environ. Sci. 13, 554–561 (2020).Article 
CAS 

Google Scholar 
Zhao, Y. et al. Ammonia detection methods in photocatalytic and electrocatalytic experiments: how to improve the reliability of NH 3 production rates? Adv. Sci. 6, 1802109 (2019).Article 

Google Scholar 
Lv, C. et al. Selective electrocatalytic synthesis of urea with nitrate and carbon dioxide. Nat. Sustain. 4, 868–876 (2021).Article 

Google Scholar 
Utomo, W. P., Wu, H. & Ng, Y. H. Quantification methodology of ammonia produced from electrocatalytic and photocatalytic nitrogen/nitrate reduction. Energies 16, 27 (2022).Article 

Google Scholar 

Hot Topics

Related Articles