Pressure-induced generation of heterogeneous electrocatalytic metal hydride surfaces for sustainable hydrogen transfer

Norton, J. R. & Sowa, J. Introduction: metal hydrides. Chem. Rev. 116, 8315–8317 (2016).Article 
PubMed 

Google Scholar 
Ai, W., Zhong, R., Liu, X. & Liu, Q. Hydride transfer reactions catalyzed by cobalt complexes. Chem. Rev. 119, 2876–2953 (2019).Article 
CAS 
PubMed 

Google Scholar 
Kim, S., Park, Y., Kim, J., Pabst, P. T. & Chirik, P. J. Ammonia synthesis by photocatalytic hydrogenation of a N2-derived molybdenum nitride. Nat. Synth. 1, 297–303 (2022).Article 
ADS 

Google Scholar 
Asgari, P. et al. Catalytic hydrogen atom transfer from hydrosilanes to vinylarenes for hydrosilylation and polymerization. Nat. Catal. 2, 164–173 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bourrez, M., Steinmetz, R., Ott, S., Gloaguen, F. & Hammarström, L. Concerted proton-coupled electron transfer from a metal-hydride complex. Nat. Chem. 7, 140–145 (2015).Article 
CAS 

Google Scholar 
Benkovic, S. J. & Hammes-Schiffer, S. A perspective on enzyme catalysis. Science 301, 1196–1202 (2003).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Nagel, Z. D. & Klinman, J. P. Tunneling and dynamics in enzymatic hydride transfer. Chem. Rev. 106, 3095–3118 (2006). 8.Article 
CAS 
PubMed 

Google Scholar 
Ji, P., Park, J., Gu, Y., Clark, D. S. & Hartwig, J. F. Abiotic reduction of ketones with silanes catalysed by carbonic anhydrase through an enzymatic zinc hydride. Nat. Chem. 13, 312–318 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Coverdale, J. P. C. et al. Asymmetric transfer hydrogenation by synthetic catalysts in cancer cells. Nat. Chem. 10, 347–354 (2018).Article 
CAS 
PubMed 

Google Scholar 
Bau, J. A. et al. Mo3+ hydride as the common origin of H2 evolution and selective NADH regeneration in molybdenum sulfide electrocatalysts. Nat. Catal. 5, 397–404 (2022).Article 
CAS 

Google Scholar 
Jordan, A. J., Lalic, G. & Sadighi, J. P. Coinage metal hydrides: synthesis, characterization, and reactivity. Chem. Rev. 116, 8318–8372 (2016).Article 
CAS 
PubMed 

Google Scholar 
Roy, M. M. D. et al. Molecular main group metal hydrides. Chem. Rev. 121, 12784–12965 (2021).Article 
CAS 
PubMed 

Google Scholar 
Jochmann, P. & Stephan, D. W. H2 Cleavage, hydride formation, and catalytic hydrogenation of imines with zinc complexes of C5Me5 and N-Heterocyclic carbenes. Angew. Chem. Int. Ed. 52, 9831–9835 (2013).Article 
CAS 

Google Scholar 
Jochmann, P. & Stephan, D. W. Zincocene and dizincocene N-heterocyclic carbene complexes and catalytic hydrogenation of imines and ketones. Chem. Eur. J. 20, 8370–8378 (2014).Article 
CAS 
PubMed 

Google Scholar 
Brazzolotto, D. et al. Nickel-centred proton reduction catalysis in a model of [NiFe] hydrogenase. Nat. Chem. 8, 1054–1060 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Artero, V., Chavarot-Kerlidou, M. & Fontecave, M. Splitting water with cobalt. Angew. Chem. Int. Ed. 50, 7238–7266 (2011).Article 
CAS 

Google Scholar 
Dey, S., Masero, F., Brack, E., Fontecave, M. & Mougel, V. Electrocatalytic metal hydride generation using CPET mediators. Nature 607, 499–506 (2022).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Roy, S. et al. Molecular cobalt complexes with pendant amines for selective electrocatalytic reduction of carbon dioxide to formic acid. J. Am. Chem. Soc. 139, 3685–3696 (2017).Article 
CAS 
PubMed 

Google Scholar 
Kang, P. et al. Selective Electrocatalytic reduction of CO2 to formate by water stable iridium dihydride pincer complexes. J. Am. Chem. Soc. 134, 5500–5503 (2012).Article 
CAS 
PubMed 

Google Scholar 
Zhang, S., Fan, Q., Xia, R. & Meyer, T. J. CO2 reduction: from homogeneous to heterogeneous electrocatalysis. Acc. Chem. Res. 53, 255–264 (2020).Article 
CAS 
PubMed 

Google Scholar 
Mohtadi, R. & Orimo, S.-I. The renaissance of hydrides as energy materials. Nat. Rev. Mater. 2, 16091 (2017).Article 
ADS 

Google Scholar 
Baldi, A., Narayan, T. C., Koh, A. L. & Dionne, J. A. In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals. Nat. Mater. 13, 1143–1148 (2014).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Kura, C. et al. Hydrogen separation by nanocrystalline titanium nitride membranes with high hydride ion conductivity. Nat. Energy 2, 786–794 (2017).Article 
ADS 
CAS 

Google Scholar 
Mendelsohn, M. H., Gruen, D. M. & Dwight, A. E. LaNi5-xAlx is a versatile alloy system for metal hydride applications. Nature 269, 45–47 (1977).Article 
ADS 
CAS 

Google Scholar 
Jeon, K.-J. et al. Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts. Nat. Mater. 10, 286–290 (2011).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Graetz, J. New approaches to hydrogen storage. Chem. Soc. Rev. 38, 73–82 (2009).Article 
CAS 
PubMed 

Google Scholar 
Chang, F. et al. Potassium hydride-intercalated graphite as an efficient heterogeneous catalyst for ammonia synthesis. Nat. Catal. 5, 222–230 (2022).Article 
CAS 

Google Scholar 
Gao, W. et al. Production of ammonia via a chemical looping process based on metal imides as nitrogen carriers. Nat. Energy 3, 1067–1075 (2018).Article 
ADS 
CAS 

Google Scholar 
Xu, W. et al. Nanoporous palladium hydride for electrocatalytic N2 reduction under ambient conditions. Angew. Chem. Int. Ed. 59, 3511–3516 (2020).Article 
CAS 

Google Scholar 
Sherbo, R. S., Kurimoto, A., Brown, C. M. & Berlinguette, C. P. Efficient electrocatalytic hydrogenation with a palladium membrane reactor. J. Am. Chem. Soc. 141, 7815–7821 (2019).Article 
CAS 
PubMed 

Google Scholar 
Wang, J. et al. Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential. Nat. Commun. 9, 1795 (2018).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Rosen, J. et al. Electrodeposited Zn dendrites with enhanced CO selectivity for electrocatalytic CO2 reduction. ACS Catal. 5, 4586–4591 (2015).Article 
CAS 

Google Scholar 
Urbain, F. et al. A prototype reactor for highly selective solar-driven CO2 reduction to synthesis gas using nanosized earth-abundant catalysts and silicon photovoltaics. Energy Environ. Sci. 10, 2256–2266 (2017).Article 
CAS 

Google Scholar 
Won, D. H. et al. A prototype reactor for highly selective solar-driven CO2 reduction to synthesis gas using nanosized earth-abundant catalysts and silicon photovoltaics. Angew. Chem. Int. Ed. 128, 9443–9446 (2016).Article 
ADS 

Google Scholar 
Monteiro, M. C. O. et al. Absence of CO2 electroreduction on copper, gold and silver electrodes without metal cations in solution. Nat. Catal. 4, 654–662 (2021).Article 
CAS 

Google Scholar 
Gu, J. et al. Modulating electric field distribution by alkali cations for CO2 electroreduction in strongly acidic medium. Nat. Catal. 5, 268–276 (2022).Article 
CAS 

Google Scholar 
Ringe, S. et al. Understanding cation effects in electrochemical CO2 reduction. Energy Environ. Sci. 12, 3001–3014 (2019).Article 
CAS 

Google Scholar 
Strmcnik, D. et al. The role of non-covalent interactions in electrocatalytic fuel-cell reactions on platinum. Nat. Chem. 1, 466–472 (2009).Article 
CAS 
PubMed 

Google Scholar 
Bockris, J. O’M. & Reddy, A. K. N. Modern Electrochemistry (Plenum, 1970).Morales-Guio, C. G., Stern, L. A. & Hu, X. L. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 43, 6555–6569 (2014).Article 
CAS 
PubMed 

Google Scholar 
Ishikawa, R. et al. Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy. Nat. Mater. 10, 278–281 (2011).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Wilson, R. G. SIMS quantification in Si, GaAs, and diamond-an update. Int. J. Mass Spectrom. 143, 43–49 (1995).Article 
ADS 
CAS 

Google Scholar 
Kato, S. et al. The Origin of the catalytic activity of a metal hydride in CO2 reduction. Angew. Chem. Int. Ed. 128, 6132–6136 (2016).Article 
ADS 

Google Scholar 
Zhu, Z., Shutthanandan, V. & Engelhard, M. An investigation of hydrogen depth profiling using ToF-SIMS. Surf. Interface Anal. 44, 232–237 (2012).Article 
CAS 

Google Scholar 
Ding, L., Nicolay, S., Steinhauser, J., Kroll, U. & Ballif, C. Relaxing the conductivity/transparency trade-off in MOCVD ZnO thin films by hydrogen plasma. Adv. Funct. Mater. 23, 5177–5182 (2013).Article 
CAS 

Google Scholar 
Ip, K. et al. Hydrogen incorporation and diffusivity in plasma-exposed bulk ZnO. Appl. Phys. Lett. 82, 385–387 (2003).Article 
ADS 
CAS 

Google Scholar 
Li, H. et al. Oxidative stability matters: a case study of palladium hydride nanosheets for alkaline fuel cells. J. Am. Chem. Soc. 144, 8106–8114 (2022).Article 
CAS 
PubMed 

Google Scholar 
Tsuchiya, B. et al. Electronic structure of the bulk of titanium hydrides fractured in ultrahigh vacuum by XPS surface analysis. J. Surf. Anal. 14, 424–427 (2008).CAS 

Google Scholar 
Chen, Y.-S. et al. Direct observation of individual hydrogen atoms at trapping sites in a ferritic steel. Science 355, 1196–1199 (2017).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Chen, Y.-S. et al. Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates. Science 367, 171–175 (2020).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Lee, J. H. et al. Tuning the activity and selectivity of electroreduction of CO2 to synthesis gas using bimetallic catalysts. Nat. Commun. 10, 3724 (2019).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Hong, J. et al. Metastable hexagonal close-packed palladium hydride in liquid cell TEM. Nature 603, 631–636 (2022).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Liu, Y., Ren, Z. H., Liu, J., Schaller, R. F. & Asselin, E. Electrochemical investigation and identification of titanium hydrides formed in mixed chloride sulfuric acid solution. J. Electrochem. Soc. 166, C3096–C3105 (2019).Article 
CAS 

Google Scholar 
Jiang, D. et al. Saturated hydrogen regulated Ti coordination of metallic TiH2/Ti electrode via in-situ electrochemical hydrogenation for enhanced hydrogen evolution reaction. Nano Energy 93, 106892 (2022).Article 
CAS 

Google Scholar 
Panagopoulos, C. N., Georgiou, E. P. & Chaliampalias, D. Cathodic hydrogen charging of zinc. Corros. Sci. 79, 16–20 (2014).Article 
CAS 

Google Scholar 
Jeon, H.-H., Lee, S.-M., Han, J., Park, I.-J. & Lee, Y.-K. The effect of Zn coating layers on the hydrogen embrittlement of hot-dip galvanized twinning-induced plasticity steel. Corros. Sci. 111, 267–274 (2016).Article 
CAS 

Google Scholar 
Xiong, X. L. et al. Hydrostatic pressure effects on the kinetic parameters of hydrogen evolution and permeation in Armco iron. Electrochim. Acta 255, 230–238 (2017).Article 
CAS 

Google Scholar 
Feaster, J. T. et al. Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes. ACS Catal. 7, 4822–4827 (2017).Article 
CAS 

Google Scholar 
Won, D. H. et al. Highly efficient, selective, and stable CO2 electroreduction on a hexagonal Zn catalyst. Angew. Chem. Int. Ed. 55, 9297–9300 (2016).Article 
CAS 

Google Scholar 
Jeon, H. S. et al. Operando evolution of the structure and oxidation state of size-controlled Zn nanoparticles during CO2 electroreduction. J. Am. Chem. Soc. 140, 9383–9386 (2018).Article 
CAS 
PubMed 

Google Scholar 
Wang, L. et al. Bimetallic effects on Zn-Cu electrocatalysts enhance activity and selectivity for the conversion of CO2 to CO. Chem. Catal. 1, 663–680 (2021).Article 
CAS 

Google Scholar 
Liu, R., Cui, Y., Liu, L. & Wang, F. Study on the mechanism of hydrostatic pressure promoting electrochemical corrosion of pure iron in 3.5% NaCl solution. Acta Mater. 203, 116467 (2021).Article 
CAS 

Google Scholar 
Xu, Z. et al. Effect of hydrostatic pressure on hydrogen behavior on the surface of X70 pipeline steel. J. Mater. Res. Technol. 25, 5907–5916 (2023).Article 
CAS 

Google Scholar 
Jiang, X. et al. Electrocatalytic reduction of carbon dioxide over reduced nanoporous zinc oxide. Electrochem. Commun. 68, 67–70 (2016).Article 
CAS 

Google Scholar 
Liu, K., Wang, J., Shi, M., Yan, J. & Jiang, Q. Simultaneous achieving of high Faradaic efficiency and CO partial current density for CO2 reduction via robust, noble-metal-free Zn nanosheets with favorable adsorption energy. Adv. Energy Mater. 9, 1900276 (2019).Article 

Google Scholar 
Luo, W. et al. Electrochemical reconstruction of ZnO for selective reduction of CO2 to CO. Appl. Catal. B: Environ. 273, 119060 (2020).Article 
CAS 

Google Scholar 
Kang, M. P. L., Kolb, M. J., Calle-Vallejo, F. & Yeo, B. S. The role of undercoordinated sites on zinc electrodes for CO2 reduction to CO. Adv. Funct. Mater. 32, 2111597 (2022).Article 
CAS 

Google Scholar 
Li, C., Xie, X., Liang, S. & Zhou, J. Issues and future perspective on zinc metal anode for rechargeable aqueous zinc-ion batteries. Energy Environ. Mater. 3, 146–159 (2020).Article 
CAS 

Google Scholar 
Wang, J. et al. Inversely tuning the CO2 electroreduction and hydrogen evolution activity on metal oxide via heteroatom doping. Angew. Chem. Int. Ed. 60, 7602–7606 (2021).Article 
CAS 

Google Scholar 
Qin, B. et al. Electrochemical reduction of CO2 into tunable syngas production by regulating the crystal facets of earth-abundant Zn catalyst. ACS Appl. Mater. Interfaces 10, 20530–20539 (2018).Article 
CAS 
PubMed 

Google Scholar 
Gao, J. et al. Selective C-C coupling in carbon dioxide electroreduction via efficient spillover of intermediates as supported by operando Raman spectroscopy. J. Am. Chem. Soc. 141, 18704–18714 (2019).Article 
CAS 
PubMed 

Google Scholar 
Singh, M. R., Goodpaster, J. D., Weber, A. Z. & Bell, A. T. Mechanistic insights into electrochemical reduction of CO2 over Ag using density functional theory and transport models. Proc. Natl Acad. Sci. USA 114, E8812–E8821 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tao, Z., Pearce, A. J., Mayer, J. M. & Wang, H. Bridge sites of Au surfaces are active for electrocatalytic CO2 reduction. J. Am. Chem. Soc. 144, 8641–8648 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, Y. et al. Direct detection of electron transfer reactions underpinning the tin-catalyzed electrochemical reduction of CO2 using Fourier-transformed ac voltammetry. ACS Catal. 7, 4846–4853 (2017).Article 
CAS 

Google Scholar 
Snitkoff-Sol, R. Z. et al. Quantifying the electrochemical active site density of precious metal-free catalysts in situ in fuel cells. Nat. Catal. 5, 163–170 (2022).Article 
CAS 

Google Scholar 
Kosugi, K. et al. Quick and easy method to dramatically improve the electrochemical CO2 reduction activity of an iron porphyrin complex. Angew. Chem. Int. Ed. 60, 22070–22074 (2021).Article 
CAS 

Google Scholar 
Forster, R. J., Loughman, P. & Keyes, T. E. Effect of electrode density of states on the heterogeneous electron-transfer dynamics of osmium-containing monolayers. J. Am. Chem. Soc. 122, 11948–11955 (2000).Article 
CAS 

Google Scholar 
Lee, M.-Y., Ringe, S., Kim, H., Kang, S. & Kwon, Y. Electric field mediated selectivity switching of electrochemical CO2 reduction from formate to CO on carbon supported Sn. ACS Energy Lett. 5, 2987–2994 (2020).Article 
CAS 

Google Scholar 
Cheng, T.-Y. & Bullock, R. M. Isotope effects on hydride transfer reactions from transition metal hydrides to trityl cation. An inverse isotope effect for a hydride transfer. J. Am. Chem. Soc. 121, 3150–3155 (1999).Article 
CAS 

Google Scholar 
Hascall, T. et al. Mechanistic and theoretical analysis of the oxidative addition of H2 to six-coordinate molybdenum and tungsten complexes M(PMe3)4X2 (M = Mo, W; X = F, Cl, Br, I):  An inverse equilibrium isotope effect and an unprecedented halide dependence. J. Am. Chem. Soc. 121, 11402–11417 (1999).Article 
CAS 

Google Scholar 
Guo, S. et al. Robust palladium hydride catalyst for electrocatalytic formate formation with high CO tolerance. Appl. Catal. B: Environ. 316, 121659 (2022).Article 
CAS 

Google Scholar 
Lutterman, D. A., Surendranath, Y. & Nocera, D. G. A self-healing oxygen-evolving catalyst. J. Am. Chem. Soc. 131, 3838–3839 (2009).Article 
CAS 
PubMed 

Google Scholar 
Thorarinsdottir, A. E., Veroneau, S. S. & Nocera, D. G. Self-healing oxygen evolution catalysts. Nat. Commun. 13, 1243 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Peterson, A. A. & Nørskov, J. K. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J. Phys. Chem. Lett. 3, 251–258 (2012).Article 
CAS 

Google Scholar 
Zhou, Y. et al. Long-chain hydrocarbons by CO2 electroreduction using polarized nickel catalysts. Nat. Catal. 5, 545–554 (2022).Article 
CAS 

Google Scholar 
Qi, K. et al. Unlocking direct CO2 electrolysis to C3 products via electrolyte supersaturation. Nat. Catal. 6, 319–331 (2023).Article 
CAS 

Google Scholar 
Jin, J. et al. Constrained C2 adsorbate orientation enables CO-to-acetate electroreduction. Nature 617, 724–729 (2023).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Huang, L. et al. Pressure dependence in aqueous-based electrochemical CO2 reduction. Nat. Commun. 14, 2958 (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, C. et al. Oxidation of metallic Cu by supercritical CO2 and control synthesis of amorphous nano-metal catalysts for CO2 electroreduction. Nat. Commun. 14, 1092 (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhai, Y. et al. Phase engineering of metal nanocatalysts for electrochemical CO2 reduction. eScience 2, 467–485 (2022).Article 

Google Scholar 
Li, J. et al. Electroreduction of CO2 to formate on a copper-based electrocatalyst at high pressures with high energy conversion efficiency. J. Am. Chem. Soc. 142, 7276–7282 (2020).Article 
CAS 
PubMed 

Google Scholar 
Chen, Y., Li, C. W. & Kanan, M. W. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J. Am. Chem. Soc. 134, 19969–19972 (2012).Article 
CAS 
PubMed 

Google Scholar 
Kim, J. et al. Morphology-controlled Au nanostructures for efficient and selective electrochemical CO2 reduction. J. Mater. Chem. A 6, 5119–5128 (2018).Article 
ADS 
CAS 

Google Scholar 
Hosseini, M. G., Abdolmaleki, M. & Ashrafpoor, S. Electrocatalytic oxidation of sodium borohydride on a nanoporous Ni/Zn-Ni electrode. Chin. J. Catal. 33, 1817–1824 (2012).Article 
CAS 

Google Scholar 
Chen, L. & Lasia, A. J. Electrochem. Soc. 139, 3214 (1992).Article 
ADS 
CAS 

Google Scholar 
Wang, H. et al. Self-selective catalyst synthesis for CO2 reduction. Joule 3, 1927–1936 (2019).Article 
CAS 

Google Scholar 
Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).Article 
CAS 

Google Scholar 
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).Article 
ADS 
CAS 

Google Scholar 
Perdew, J., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).Article 
ADS 
CAS 

Google Scholar 
Monkhorst, H. & Pack, J. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).Article 
ADS 
MathSciNet 

Google Scholar 
Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).Article 
ADS 
CAS 

Google Scholar 

Hot Topics

Related Articles