Effect of ion-specific water structures at metal surfaces on hydrogen production

Devanathan, M. A. & Tilak, B. V. K. Structure of electrical double layer at metal-solution interface. Chem. Rev. 65, 635–684 (1965).Article 

Google Scholar 
Stamenkovic, V. R., Strmcnik, D., Lopes, P. P. & Markovic, N. M. Energy and fuels from electrochemical interfaces. Nat. Mater. 16, 57–69 (2017).Article 
ADS 

Google Scholar 
Simon, P. & Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008).Article 
ADS 
PubMed 

Google Scholar 
Subbaraman, R. et al. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 334, 1256–1260 (2011).Article 
ADS 
PubMed 

Google Scholar 
Choi, N. S. et al. Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem. Int. Ed. 51, 9994–10024 (2012).Article 

Google Scholar 
Stern, O. ZUR THEORIE DER ELEKTROLYTISCHEN DOPPELSCHICHT. Zeitschrift für Elektrochemie und angewandte physikalische Chemie 30, 508–516 (1924).Article 

Google Scholar 
Strmcnik, D. et al. The role of non-covalent interactions in electrocatalytic fuel-cell reactions on platinum. Nat. Chem. 1, 466–472 (2009).Article 
PubMed 

Google Scholar 
Liu, M. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 537, 382–386 (2016).Article 
ADS 
PubMed 

Google Scholar 
Resasco, J. et al. Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide. J. Am. Chem. Soc. 139, 11277–11287 (2017).Article 
PubMed 

Google Scholar 
Ringe, S. et al. Double layer charging driven carbon dioxide adsorption limits the rate of electrochemical carbon dioxide reduction on Gold. Nat. Commun. 11, 1–11 (2020).Article 
ADS 

Google Scholar 
Gu, J. et al. Modulating electric field distribution by alkali cations for CO2 electroreduction in strongly acidic medium. Nat. Catal. 5, 268–276 (2022).Article 

Google Scholar 
Ledezma-Yanez, I. et al. Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat. Energy 2, 1–7 (2017).Article 

Google Scholar 
Huang, B. et al. Cation- and pH-dependent hydrogen evolution and oxidation reaction kinetics. JACS Au 1, 1674–1687 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Monteiro, M. C. O. et al. Absence of CO2 electroreduction on copper, gold and silver electrodes without metal cations in solution. Nat. Catal. 4, 654–662 (2021).Article 

Google Scholar 
Shah, A. H. et al. The role of alkali metal cations and platinum-surface hydroxyl in the alkaline hydrogen evolution reaction. Nat. Catal. 5, 923–933 (2022).Article 

Google Scholar 
Ovalle, V. J., Hsu, Y. S., Agrawal, N., Janik, M. J. & Waegele, M. M. Correlating hydration free energy and specific adsorption of alkali metal cations during CO2 electroreduction on Au. Nat. Catal. 5, 624–632 (2022).Article 

Google Scholar 
Grosberg, A. Y., Nguyen, T. T. & Shklovskii, B. I. Colloquium: The physics of charge inversion in chemical and biological systems. Rev. Mod. Phys. 74, 329–345 (2002).Article 
ADS 

Google Scholar 
Lyklema, J. Quest for ion-ion correlations in electric double layers and overcharging phenomena. Adv. Colloid Interface Sci. 147-48, 205–213 (2009).Article 

Google Scholar 
Toney, M. F. et al. Voltage-dependent ordering of water-molecules at an electrode-electrolyte interface. Nature 368, 444–446 (1994).Article 
ADS 

Google Scholar 
Velasco-Velez, J. J. et al. The structure of interfacial water on gold electrodes studied by x-ray absorption spectroscopy. Science 346, 831–834 (2014).Article 
ADS 
PubMed 

Google Scholar 
Intikhab, S., Snyder, J. D. & Tang, M. H. Adsorbed hydroxide does not participate in the volmer step of alkaline hydrogen electrocatalysis. ACS Catal. 7, 8314–8319 (2017).Article 

Google Scholar 
Hao, Y. C. et al. Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water. Nat. Catal. 2, 448–456 (2019).Article 

Google Scholar 
Zou, S. Z., Chen, Y. X., Mao, B. W., Ren, B. & Tian, Z. Q. SERS studies on electrode/electrolyte interfacial water .1. Ion effects in the negative potential region. J. Electroanal. Chem. 424, 19–24 (1997).Article 

Google Scholar 
Ataka, K., Yotsuyanagi, T. & Osawa, M. Potential-dependent reorientation of water molecules at an electrode/electrolyte interface studied by surface-enhanced infrared absorption spectroscopy. J. Phys. Chem. 100, 10664–10672 (1996).Article 

Google Scholar 
Nihonyanagi, S. et al. Potential-dependent structure of the interfacial water on the gold electrode. Surf. Sci. 573, 11–16 (2004).Article 
ADS 

Google Scholar 
Li, C. Y. et al. In situ probing electrified interfacial water structures at atomically flat surfaces. Nat. Mater. 18, 697–701 (2019).Article 
ADS 
PubMed 

Google Scholar 
Dunwell, M., Wang, J. H., Yan, Y. & Xu, B. Surface enhanced spectroscopic investigations of adsorption of cations on electrochemical interfaces. Phys. Chem. Chem. Phys. 19, 971–975 (2017).Article 
PubMed 

Google Scholar 
Liu, Y. H., Kawaguchi, T., Pierce, M. S., Komanicky, V. & You, H. Layering and ordering in electrochemical double layers. J. Phys. Chem. Lett. 9, 1265–1271 (2018).Article 
PubMed 

Google Scholar 
Nakamura, M., Nakajima, Y., Sato, N., Hoshi, N. & Sakata, O. Structure of the electrical double layer on Ag(100): Promotive effect of cationic species on Br adlayer formation. Phys. Rev. B 84, 165433 (2011).Article 
ADS 

Google Scholar 
Wang, Y. H. et al. In situ Raman spectroscopy reveals the structure and dissociation of interfacial water. Nature 600, 81–85 (2021).Article 
ADS 
PubMed 

Google Scholar 
Garcia-Araez, N., Rodriguez, P., Navarro, V., Bakker, H. J. & Koper, M. T. M. Structural effects on water adsorption on gold electrodes. J. Phys. Chem. C 115, 21249–21257 (2011).Article 

Google Scholar 
Li, P. et al. Hydrogen bond network connectivity in the electric double layer dominates the kinetic pH effect in hydrogen electrocatalysis on Pt. Nat. Catal. 5, 900–911 (2022).Article 

Google Scholar 
Giessibl, F. J. The qPlus sensor, a powerful core for the atomic force microscope. Rev. Sci. Instrum. 90, 011101 (2019).Article 
ADS 
PubMed 

Google Scholar 
Peng, J. B. et al. The effect of hydration number on the interfacial transport of sodium ions. Nature 563, 701–705 (2018).Article 
ADS 

Google Scholar 
Tian, Y. et al. Visualizing Eigen/Zundel cations and their interconversion in monolayer water on metal surfaces. Science 377, 315–319 (2022).Article 
ADS 
PubMed 

Google Scholar 
Tian, Y. et al. Nanoscale one-dimensional close packing of interfacial alkali ions driven by water-mediated attraction. Nat. Nanotechnol. 19, 479–485 (2024).Article 
ADS 
PubMed 

Google Scholar 
Garlyyev, B., Xue, S., Watzele, S., Scieszka, D. & Bandarenka, A. S. Influence of the nature of the alkali metal cations on the electrical double-layer capacitance of model Pt(111) and Au(111) electrodes. J. Phys. Chem. Lett. 9, 1927–1930 (2018).Article 
PubMed 

Google Scholar 
Brown, M. A., Goel, A. & Abbas, Z. Effect of electrolyte concentration on the Stern layer thickness at a charged interface. Angew. Chem. Int. Ed. 55, 3790–3794 (2016).Article 

Google Scholar 
Cheng, J. & Sprik, M. The electric double layer at a rutile TiO2 water interface modelled using density functional theory based molecular dynamics simulation. J. Phys.: Condens. Matter 26, 244108 (2014).PubMed 

Google Scholar 
Gross, L., Mohn, F., Moll, N., Liljeroth, P. & Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009).Article 
ADS 
PubMed 

Google Scholar 
Shiotari, A. & Sugimoto, Y. Ultrahigh-resolution imaging of water networks by atomic force microscopy. Nat. Commun. 8, 1–7 (2017).Article 

Google Scholar 
Ma, R. Z. et al. Atomic imaging of the edge structure and growth of a two-dimensional hexagonal ice. Nature 577, 60–63 (2020).Article 
ADS 
PubMed 

Google Scholar 
Goyal, A. & Koper, M. T. M. The interrelated effect of cations and electrolyte pH on the hydrogen evolution reaction on gold electrodes in alkaline media. Angew. Chem. Int. Ed. 60, 13452–13462 (2021).Article 

Google Scholar 
Monteiro, M. C. O., Goyal, A., Moerland, P. & Koper, M. T. M. Understanding cation trends for hydrogen evolution on platinum and gold electrodes in alkaline media. ACS Catal. 11, 14328–14335 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Kolb, D. M. & Schneider, J. Surface reconstruction in electrochemistry – Au(100)-(5×20), Au(111)-(1×23) and Au(110)-(1×2). Electrochim. Acta 31, 929–936 (1986).Article 

Google Scholar 
Bode, D. D., Andersen, T. N. & Eyring, H. Anion and pH effects on the potentials of zero charge of gold and silver electrodes. J. Phys. Chem. 71, 792–797 (1967).Article 

Google Scholar 
Bodé, D. D., Andersen, T. N. & Eyring, H. Cation effects on the potentials of zero charge of gold, silver, and mercury electrodes. J. Electrochem. Soc. 114, 72 (1967).Article 
ADS 

Google Scholar 
Durst, J. et al. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ. Sci. 7, 2255–2260 (2014).Article 

Google Scholar 
Sheng, W. C., Gasteiger, H. A. & Shao-Horn, Y. Hydrogen oxidation and evolution reaction kinetics on platinum: Acid vs alkaline electrolytes. J. Electrochem. Soc. 157, B1529–B1536 (2010).Article 

Google Scholar 
Ringe, S. Cation effects on electrocatalytic reduction processes at the example of the hydrogen evolution reaction. Curr. Opin. Electrochem. 39, 101268 (2023).Article 

Google Scholar 
Rebollar, L. et al. “Beyond adsorption” descriptors in hydrogen electrocatalysis. ACS Catal. 10, 14747–14762 (2020).Article 

Google Scholar 
Strmcnik, D., Lopes, P. P., Genorio, B., Stamenkovic, V. R. & Markovic, N. M. Design principles for hydrogen evolution reaction catalyst materials. Nano Energy 29, 29–36 (2016).Article 

Google Scholar 
Hong, J. et al. Imaging surface structure and premelting of ice Ih with atomic resolution. Nature630,375–380 (2024).Kringle, L., Thornley, W. A., Kay, B. D. & Kimmel, G. A. Reversible structural transformations in supercooled liquid water from 135 to 245 K. Science 369, 1490–1492 (2020).Article 
ADS 
PubMed 

Google Scholar 
Kresse, G. Ab-initio molecular-dynamics for liquid-metals. J. Non-Cryst. Solids 193, 222–229 (1995).Article 
ADS 

Google Scholar 
Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).Article 
ADS 

Google Scholar 
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).Article 
ADS 

Google Scholar 
Klimes, J., Bowler, D. R. & Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys.: Condens. Matter 22, 022201 (2010).ADS 
PubMed 

Google Scholar 
Klimes, J., Bowler, D. R. & Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 83, 195131 (2011).Article 
ADS 

Google Scholar 
Neugebauer, J. & Scheffler, M. Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). Phys. Rev. B 46, 16067–16080 (1992).Article 
ADS 

Google Scholar 
Makov, G. & Payne, M. C. Periodic boundary-conditions in ab-initio calculations. Phys. Rev. B 51, 4014–4022 (1995).Article 
ADS 

Google Scholar 
Henkelman, G., Arnaldsson, A. & Jonsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comp. Mater. Sci. 36, 354–360 (2006).Article 

Google Scholar 
Hapala, P. et al. Mechanism of high-resolution STM/AFM imaging with functionalized tips. Phys. Rev. B 90, 085421 (2014).Article 
ADS 

Google Scholar 
Osawa, M., Ataka, K., Yoshii, K. & Nishikawa, Y. Surface-enhanced infrared-spectroscopy – the origin of the absorption enhancement and band selection rule in the infrared-spectra of molecules adsorbed on fine metal particles. Appl Spectrosc 47, 1497–1502 (1993).Article 
ADS 

Google Scholar 
Tian, Y. et al Effect of ion-specific water structures at metal surfaces on hydrogen production. Zenodo. https://doi.org/10.5281/zenodo.13634826 (2024).

Hot Topics

Related Articles