Synthesis pathways to thin films of stable layered nitrides

Fleming, G. R. & Ratner, M. A. Grand challenges in basic energy sciences. Phys. Today 61, 28–33 (2008).Article 

Google Scholar 
Kreider, M. E. et al. Nitride or oxynitride? Elucidating the composition–activity relationships in molybdenum nitride electrocatalysts for the oxygen reduction reaction. Chem. Mater. 32, 2946–2960 (2020).Article 
CAS 

Google Scholar 
Nakamura, Y. et al. Superconducting qubits consisting of epitaxially grown NbN/AlN/NbN Josephson junctions. Appl. Phys. Lett. 99, 212502 (2011).Article 

Google Scholar 
Jiang, K. et al. Mechanical cleavage of non-van der Waals structures towards two-dimensional crystals. Nat. Synth. 2, 58–66 (2022).Article 

Google Scholar 
Zhang, K., Feng, Y., Wang, F., Yang, Z. & Wang, J. Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications. J. Mater. Chem. C 5, 11992–12022 (2017).Article 
CAS 

Google Scholar 
Shur, M., Gelmont, B. & Asif Khan, M. Electron mobility in two-dimensional electron gas in AIGaN/GaN heterostructures and in bulk GaN. J. Electron. Mater. 25, 777–785 (1996).Article 
CAS 

Google Scholar 
Biswas, A., Natu, V. & Puthirath, A. B. Thin-film growth of MAX phases as functional materials. Oxf. Open Mater. Sci. 1, itab020 (2020).Article 

Google Scholar 
Lim, K. R. G. et al. Fundamentals of MXene synthesis. Nat. Synth. 1, 601–614 (2022).Article 

Google Scholar 
Yamane, H. & DiSalvo, F. J. Sodium flux synthesis of nitrides. Prog. Solid State Chem. 51, 27–40 (2018).Article 
CAS 

Google Scholar 
Niewa, R., Zherebtsov, D. A., Schnelle, W. & Wagner, F. R. Metal–metal bonding in ScTaN2. A new compound in the system ScN–TaN. Inorg. Chem. 43, 6188–6194 (2004).Article 
CAS 
PubMed 

Google Scholar 
Pilemalm, R., Pourovskii, L., Mosyagin, I., Simak, S. & Eklund, P. Thermodynamic stability, thermoelectric, elastic and electronic structure properties of ScMN2-type (M = V, Nb, Ta) phases studied by ab initio calculations. Condens. Matter 4, 36 (2019).Article 
CAS 

Google Scholar 
Brokamp, T. & Jacobs, H. Darstellung und Struktur einiger Gemischtvalenter ternärer Tantalnitride mit Lithium und Magnesium. J. Alloys Compd. 183, 325–344 (1992).Article 
CAS 

Google Scholar 
Verrelli, R. et al. On the study of Ca and Mg deintercalation from ternary tantalum nitrides. ACS Omega 4, 8943–8952 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gregory, D. H. et al. Layered ternary transition metal nitrides; synthesis, structure and physical properties. J. Alloys Compd. 317–318, 237–244 (2001).Article 

Google Scholar 
Gregory, D. H. Structural families in nitride chemistry. J. Chem. Soc. Dalton Trans. 7, 259–270 (1999).Article 

Google Scholar 
Zakutayev, A., Bauers, S. R. & Lany, S. Experimental synthesis of theoretically predicted multivalent ternary nitride materials. Chem. Mater. 34, 1418–1438 (2022).Article 
CAS 

Google Scholar 
Greenaway, A. L. et al. Ternary nitride materials: fundamentals and emerging device applications. Annu. Rev. Mater. Res. 51, 591–618 (2021).Article 
CAS 

Google Scholar 
Bauers, S. R. et al. Ternary nitride semiconductors in the rocksalt crystal structure. Proc. Natl Acad. Sci. USA 116, 14829–14834 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yang, M. et al. Anion order in perovskite oxynitrides. Nat. Chem. 3, 47–52 (2010).Article 
PubMed 

Google Scholar 
Kageyama, H. et al. Expanding frontiers in materials chemistry and physics with multiple anions. Nat. Commun. 9, 772 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Bem, D. S., Lampe-Önnerud, C. M., Olsen, H. P. & zur Loye, H.-C. Synthesis and structure of two new ternary nitrides: FeWN2 and MnMoN2. Inorg. Chem. 35, 581–585 (1996).Article 
CAS 

Google Scholar 
Cao, B., Veith, G. M., Neuefeind, J. C., Adzic, R. R. & Khalifah, P. G. Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction. J. Am. Chem. Soc. 135, 19186–19192 (2013).Article 
CAS 
PubMed 

Google Scholar 
Verrelli, R. et al. On the viability of Mg extraction in MgMoN2: a combined experimental and theoretical approach. Phys. Chem. Chem. Phys. 19, 26435–26441 (2017).Article 
CAS 
PubMed 

Google Scholar 
Wang, L. et al. Solid state synthesis of a new ternary nitride MgMoN2 nanosheets and micromeshes. J. Mater. Chem. 22, 14559–14564 (2012).Article 
CAS 

Google Scholar 
Woods-Robinson, R. et al. Role of disorder in the synthesis of metastable zinc zirconium nitrides. Phys. Rev. Mater. 6, 043804 (2022).Article 
CAS 

Google Scholar 
Arca, E. et al. Redox-mediated stabilization in zinc molybdenum nitrides. J. Am. Chem. Soc. 140, 4293–4301 (2018).Article 
CAS 
PubMed 

Google Scholar 
Rom, C. L. et al. Bulk and film synthesis pathways to ternary magnesium tungsten nitrides. J. Mater. Chem. C 11, 11451–11459 (2023).Article 
CAS 

Google Scholar 
Huang, H., Jin, K. H. & Liu, F. Alloy engineering of topological semimetal phase transition in MgTa2−xNbx. Phys. Rev. Lett. 120, N3 (2018).Article 

Google Scholar 
Wu, Q., Piveteau, C., Song, Z. & Yazyev, O. V. MgTa2N3: a reference Dirac semimetal. Phys. Rev. B 98, 081115 (2018).Article 
CAS 

Google Scholar 
Bordeenithikasem, P. et al. Determination of critical cooling rates in metallic glass forming alloy libraries through laser spike annealing. Sci. Rep. 7, 7155 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Tholander, C., Andersson, C. B. A., Armiento, R., Tasnádi, F. & Alling, B. Strong piezoelectric response in stable TiZnN2, ZrZnN2, and HfZnN2 found by ab initio high-throughput approach. J. Appl. Phys. 120, 225102 (2016).Article 

Google Scholar 
Jones, E. B. & Stevanović, V. Polymorphism in elemental silicon: probabilistic interpretation of the realizability of metastable structures. Phys. Rev. B 96, 184101 (2017).Article 

Google Scholar 
Stevanović, V. Sampling polymorphs of ionic solids using random superlattices. Phys. Rev. Lett. 116, 075503 (2016).Article 
PubMed 

Google Scholar 
Jankousky, M., Garrity, E. M. & Stevanović, V. Polymorphism of group-IV carbides: structures, (meta)stability, electronic, and transport properties. Phys. Rev. Mater. 7, 053606 (2023).Article 
CAS 

Google Scholar 
Jones, E. B. & Stevanović, V. The glassy solid as a statistical ensemble of crystalline microstates. NPJ Comput. Mater. 6, 56 (2020).Article 
CAS 

Google Scholar 
Ndione, P. F. et al. Control of the electrical properties in spinel oxides by manipulating the cation disorder. Adv. Funct. Mater. 24, 610–618 (2014).Article 
CAS 

Google Scholar 
Shirzad, K. & Viney, C. A critical review on applications of the Avrami equation beyond materials science. J. R. Soc. Interface 20, 20230242 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Yi, F. & Lavan, D. A. Nanocalorimetry: exploring materials faster and smaller. Appl. Phys. Rev. 6, 031302 (2019).Article 

Google Scholar 
Stevanović, V. et al. Predicting kinetics of polymorphic transformations from structure mapping and coordination analysis. Phys. Rev. Mater. 2, 033802 (2018).Article 

Google Scholar 
Todd, P. K., Fallon, M. J., Neilson, J. R. & Zakutayev, A. Two-step solid-state synthesis of ternary nitride materials. ACS Mater. Lett. 3, 1677–1683 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kertesz, M. & Hoffmann, R. Octahedral vs. trigonal-prismatic coordination and clustering in transition-metal dichalcogenides. J. Am. Chem. Soc. 106, 3453–3460 (1984).Article 
CAS 

Google Scholar 
Shang, K. et al. Tolerance factor and phase stability of the KCoO2-type AMN2 nitrides. Inorg. Chem. 63, 4168–4175 (2024).Article 
CAS 
PubMed 

Google Scholar 
Shiraishi, A. et al. Design, synthesis, and optoelectronic properties of the high-purity phase in layered AETMN2 (AE = Sr, Ba; TM = Ti, Zr, Hf) semiconductors. Inorg. Chem. 61, 6650–6659 (2022).Article 
CAS 
PubMed 

Google Scholar 
Talley, K. R. et al. COMBIgor: data-analysis package for combinatorial materials science. ACS Comb. Sci. 21, 537–547 (2019).Article 
CAS 
PubMed 

Google Scholar 
Zakutayev, A. et al. An open experimental database for exploring inorganic materials. Sci. Data 5, 180053 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Yazawa, K. et al. Anomalously abrupt switching of wurtzite-structured ferroelectrics: simultaneous non-linear nucleation and growth model. Mater. Horiz. 10, 2936–2944 (2023).Article 
CAS 
PubMed 

Google Scholar 
Farrow, C. L. et al. PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals. J. Phys. Condens. Matter 19, 335219 (2007).Article 
CAS 
PubMed 

Google Scholar 
Keen, D. A. A comparison of various commonly used correlation functions for describing total scattering. J. Appl. Crystallogr. 34, 172–177 (2001).Article 
CAS 

Google Scholar 
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).Article 
CAS 

Google Scholar 
Sheppard, D., Xiao, P., Chemelewski, W., Johnson, D. D. & Henkelman, G. A generalized solid-state nudged elastic band method. J. Chem. Phys. 136, 74103 (2012).Article 

Google Scholar 
Zakutayev A. Datasets figures with chemical composition, long-range structure, short-range structure, and structural transformation of layered ternary nitrides. figshare https://doi.org/10.6084/m9.figshare.26344993 (2024).Zakutayev A. Crystal structure figures for layered ternary nitrides. figshare https://doi.org/10.6084/m9.figshare.26345092 (2024).

Hot Topics

Related Articles