A hetero-supermolecular-building-block strategy for the assembly of porous (3,12,24)-connected uru metal–organic frameworks

Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).Article 
PubMed 

Google Scholar 
Horike, S. & Kitagawa, S. The development of molecule-based porous material families and their future prospects. Nat. Mater. 21, 983–985 (2022).Article 
CAS 
PubMed 

Google Scholar 
Wang, W., Chen, D., Li, F., Xiao, X. & Xu, Q. Metal–organic-framework-based materials as platforms for energy applications. Chem 10, 86–133 (2024).Article 

Google Scholar 
Shi, L., Kirlikovali, K. O., Chen, Z. & Farha, O. K. Metal–organic frameworks for water vapor adsorption. Chem 10, 484–503 (2024).Article 
CAS 

Google Scholar 
Shi, L., Yang, Z., Sha, F. & Chen, Z. Design, synthesis and applications of functional zirconium-based metal–organic frameworks. Sci. China Chem. 66, 3383–3397 (2023).Article 
CAS 

Google Scholar 
Chen, Z., Kirlikovali, K. O., Li, P. & Farha, O. K. Reticular chemistry for highly porous metal–organic frameworks: the chemistry and applications. Acc. Chem. Res. 55, 579–591 (2022).Article 
CAS 
PubMed 

Google Scholar 
Guillerm, V. & Eddaoudi, M. The importance of highly connected building units in reticular chemistry: thoughtful design of metal–organic frameworks. Acc. Chem. Res. 54, 3298–3312 (2021).Article 
CAS 
PubMed 

Google Scholar 
Chen, Z. et al. Balancing volumetric and gravimetric uptake in highly porous materials for clean energy. Science 368, 297–303 (2020).Article 
CAS 
PubMed 

Google Scholar 
Chen, Z., Kirlikovali, K. O., Idrees, K. B., Wasson, M. C. & Farha, O. K. Porous materials for hydrogen storage. Chem 8, 693–716 (2022).Article 
CAS 

Google Scholar 
Li, B., Wen, H.-M., Zhou, W., Xu, JeffQ. & Chen, B. Porous metal–organic frameworks: promising materials for methane storage. Chem 1, 557–580 (2016).Article 
CAS 

Google Scholar 
Zhang, M. et al. Fine tuning of MOF‐505 analogues to reduce low‐pressure methane uptake and enhance methane working capacity. Angew. Chem. Int. Ed. 56, 11426–11430 (2017).Article 
CAS 

Google Scholar 
Guillerm, V. et al. A supermolecular building approach for the design and construction of metal–organic frameworks. Chem. Soc. Rev. 43, 6141–6172 (2014).Article 
CAS 
PubMed 

Google Scholar 
Nouar, F., Eubank, J. F., Till Bousquet, L. W., Zaworotko, M. J. & Eddaoudi, M. Supermolecular building blocks (SBBs) for the design and synthesis of highly porous metal–organic frameworks. J. Am. Chem. Soc. 130, 1833–1835 (2008).Article 
CAS 
PubMed 

Google Scholar 
Stoeck, U., Senkovska, I., Bon, V., Krause, S. & Kaskel, S. Assembly of metal–organic polyhedra into highly porous frameworks for ethene delivery. Chem. Commun. 51, 1046–1049 (2015).Article 
CAS 

Google Scholar 
Krause, S. et al. A pressure-amplifying framework material with negative gas adsorption transitions. Nature 532, 348–352 (2016).Article 
CAS 
PubMed 

Google Scholar 
Krause, S. et al. Towards general network architecture design criteria for negative gas adsorption transitions in ultraporous frameworks. Nat. Commun. 10, 3632 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Farha, O. K. et al. De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities. Nat. Chem. 2, 944–948 (2010).Article 
CAS 
PubMed 

Google Scholar 
Farha, O. K. et al. Metal–organic framework materials with ultrahigh surface areas: is the sky the limit?. J. Am. Chem. Soc. 134, 15016–15021 (2012).Article 
CAS 
PubMed 

Google Scholar 
Li, M., Li, D., O’Keeffe, M. & Yaghi, O. M. Topological analysis of metal–organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle. Chem. Rev. 114, 1343–1370 (2014).Article 
CAS 
PubMed 

Google Scholar 
Chen, Z., Jiang, H., Li, M., O’Keeffe, M. & Eddaoudi, M. Reticular chemistry 3.2: typical minimal edge-transitive derived and related nets for the design and synthesis of metal–organic frameworks. Chem. Rev. 120, 8039–8065 (2020).Article 
CAS 
PubMed 

Google Scholar 
Jiang, H. et al. Enriching the reticular chemistry repertoire: merged nets approach for the rational design of intricate mixed-linker metal–organic framework platforms. J. Am. Chem. Soc. 140, 8858–8867 (2018).Article 
CAS 
PubMed 

Google Scholar 
Fang, H. et al. Ligand‐Conformer‐induced formation of zirconium–organic framework for methane storage and MTO product separation. Angew. Chem. Int. Ed. 60, 16521–16528 (2021).Article 
CAS 

Google Scholar 
Chen, Z. et al. Enriching the reticular chemistry repertoire with minimal edge-transitive related nets: access to highly coordinated metal–organic frameworks based on double six-membered rings as net-coded building units. J. Am. Chem. Soc. 141, 20480–20489 (2019).Article 
CAS 
PubMed 

Google Scholar 
Alezi, D. et al. Quest for highly connected metal–organic framework platforms: rare-earth polynuclear clusters versatility meets net topology needs. J. Am. Chem. Soc. 137, 5421–5430 (2015).Article 
CAS 
PubMed 

Google Scholar 
Jiang, H. et al. Reticular chemistry for the rational design of mechanically robust mesoporous merged-net metal–organic frameworks. Matter 6, 285–295 (2023).Article 
CAS 

Google Scholar 
Guillerm, V. et al. Discovery and introduction of a (3,18)-connected net as an ideal blueprint for the design of metal–organic frameworks. Nat. Chem. 6, 673–680 (2014).Article 
CAS 
PubMed 

Google Scholar 
Hurlock, M. J. et al. Evolution of 14-connected Zr6 secondary building units through postsynthetic linker incorporation. ACS Appl. Mater. Interfaces 13, 51945–51953 (2021).Article 
CAS 
PubMed 

Google Scholar 
Froudas, K. G. et al. Expanding the reticular chemistry building block library toward highly connected nets: ultraporous MOFs based on 18-connected ternary, trigonal prismatic superpolyhedra. J. Am. Chem. Soc. 146, 8961–8970 (2024).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Du, D.-Y. et al. An unprecedented (3,4,24)-connected heteropolyoxozincate organic framework as heterogeneous crystalline Lewis acid catalyst for biodiesel production. Sci. Rep. 3, 2616 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
Park, J. et al. A versatile metal–organic framework for carbon dioxide capture and cooperative catalysis. Chem. Commun. 48, 9995–9997 (2012).Article 
CAS 

Google Scholar 
Zhu, Q. et al. 3D cage COFs: a dynamic three-dimensional covalent organic framework with high-connectivity organic cage nodes. J. Am. Chem. Soc. 142, 16842–16848 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhu, Q. et al. Soft hydrogen-bonded organic frameworks constructed using a flexible organic cage hinge. J. Am. Chem. Soc. 145, 23352–23360 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ji, C. et al. Tunable cage-based three-dimensional covalent organic frameworks. CCS Chem. 4, 3095–3105 (2022).Article 
CAS 

Google Scholar 
Shi, L., Xiong, Z., Wang, H., Cao, H. & Chen, Z. Quasicrystal approximants in isoreticular metal–organic frameworks via cairo pentagonal tiling. Chem 10, 2464–2472 (2024).Article 
CAS 

Google Scholar 
Spek, A. L. Structure validation in chemical crystallography. Acta Crystallogr. Sect. D 65, 148–155 (2009).Article 
CAS 

Google Scholar 
Mason, J. A., Veenstra, M. & Long, J. R. Evaluating metal–organic frameworks for natural gas storage. Chem. Sci. 5, 32–51 (2014).Article 
CAS 

Google Scholar 
Kayal, S., Sun, B. & Chakraborty, A. Study of metal–organic framework MIL-101(Cr) for natural gas (methane) storage and compare with other MOFs (metal–organic frameworks). Energy 91, 772–781 (2015).Article 
CAS 

Google Scholar 
Roszak, E. A. & Chorowski, M. Exergy analysis of combined simultaneous liquid natural gas vaporization and adsorbed natural gas cooling. Fuel 111, 755–762 (2013).Article 
CAS 

Google Scholar 
Kim, S.-Y., Kang, J. H., Kim, S.-I. & Bae, Y.-S. Extraordinarily large and stable methane delivery of MIL-53(Al) under LNG–ANG conditions. Chem. Eng. J. 365, 242–248 (2019).Article 
CAS 

Google Scholar 
Kim, S. Y. et al. Discovery of high‐performing metal–organic frameworks for on‐board methane storage and delivery via LNG–ANG coupling: high‐throughput screening, machine learning, and experimental validation. Adv. Sci. 9, 2201559 (2022).Article 
CAS 

Google Scholar 
He, Y., Zhou, W., Yildirim, T. & Chen, B. A series of metal–organic frameworks with high methane uptake and an empirical equation for predicting methane storage capacity. Energy Environ. Sci. 6, 2735–2744 (2013).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles