Assessing the role of evolutionary information for enhancing protein language model embeddings

Zemla, A., Venclovas, C., Fidelis, K. & Rost, B. A modified definition of Sov, a segment-based measure for protein secondary structure prediction assessment. Proteins 34, 220–223. https://doi.org/10.1002/(sici)1097-0134(19990201)34:2%3c220::aid-prot7%3e3.0.co;2-k (1999).Article 
CAS 
PubMed 

Google Scholar 
Rost, B. & Sander, C. Jury returns on structure prediction. Nature 360, 540–540. https://doi.org/10.1038/360540b0 (1992).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Rost, B. & Sander, C. Prediction of protein secondary structure at better than 70% accuracy. J. Mol. Biol. 232, 584–599 (1993).Article 
CAS 
PubMed 

Google Scholar 
Rost, B. PHD: Predicting one-dimensional protein structure by profile based neural networks. Methods Enzymol. 266, 525–539 (1996).Article 
CAS 
PubMed 

Google Scholar 
Jones, D. T. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292, 195–202 (1999).Article 
CAS 
PubMed 

Google Scholar 
Rost, B. & Sander, C. Combining evolutionary information and neural networks to predict protein secondary structure. Proteins Struct. Funct. Genet. 19, 55–72 (1994).Article 
CAS 
PubMed 

Google Scholar 
Liu, J. & Rost, B. NORSp: Predictions of long regions without regular secondary structure. Nucleic Acids Res. 31, 3833–3835 (2003).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Radivojac, P. et al. Protein flexibility and intrinsic disorder. Protein Sci. 13, 71–80 (2004).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Schlessinger, A., Liu, J. & Rost, B. Natively unstructured loops differ from other loops. PLoS Comput. Biol. 3, e140 (2007).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Schlessinger, A. & Rost, B. Protein flexibility and rigidity predicted from sequence. Proteins Struct. Funct. Bioinform. 61, 115–126 (2005).Article 
CAS 

Google Scholar 
Punta, M. & Rost, B. PROFcon: Novel prediction of long-range contacts. Bioinformatics 21, 2960–2968 (2005).Article 
CAS 
PubMed 

Google Scholar 
Jones, D. T., Singh, T., Kosciolek, T. & Tetchner, S. MetaPSICOV: Combining coevolution methods for accurate prediction of contacts and long range hydrogen bonding in proteins. Bioinformatics 31, 999–1006. https://doi.org/10.1093/bioinformatics/btu791 (2015).Article 
CAS 
PubMed 

Google Scholar 
Marks, D. S. et al. Protein 3D structure computed from evolutionary sequence variation. PLoS ONE 6, e28766. https://doi.org/10.1371/journal.pone.0028766 (2011).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Michel, M. et al. PconsFold: Improved contact predictions improve protein models. Bioinformatics 30, i482-488. https://doi.org/10.1093/bioinformatics/btu458 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589. https://doi.org/10.1038/s41586-021-03819-2 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Heinzinger, M. et al. Modeling aspects of the language of life through transfer-learning protein sequences. BMC Bioinform. 20, 723. https://doi.org/10.1186/s12859-019-3220-8 (2019).Article 
CAS 

Google Scholar 
Elnaggar, A. et al. ProtTrans: Toward understanding the language of life through self-supervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 44, 7112–7127. https://doi.org/10.1109/TPAMI.2021.3095381 (2022).Article 
PubMed 

Google Scholar 
Alley, E. C., Khimulya, G., Biswas, S., AlQuraishi, M. & Church, G. M. Unified rational protein engineering with sequence-based deep representation learning. Nat. Methods 1, 1–8 (2019).
Google Scholar 
Bepler, T. & Berger, B. Learning protein sequence embeddings using information from structure. https://doi.org/10.48550/ARXIV.1902.08661 (2019).Madani, A. et al. ProGen: Language modeling for protein generation. http://arXiv.org/2004.03497, https://doi.org/10.1101/2020.03.07.982272 (2020).Rao, R. et al. Evaluating protein transfer learning with TAPE. http://arXiv.org/1906.08230 (2019).Rives, A. et al. Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. Proc. Natl. Acad. Sci. 118, e2016239118. https://doi.org/10.1073/pnas.2016239118 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bernhofer, M. & Rost, B. TMbed: Transmembrane proteins predicted through language model embeddings. BMC Bioinform. 23, 326. https://doi.org/10.1186/s12859-022-04873-x (2022).Article 
CAS 

Google Scholar 
Littmann, M., Heinzinger, M., Dallago, C., Weissenow, K. & Rost, B. Protein embeddings and deep learning predict binding residues for various ligand classes. Sci. Rep. 11, 23916. https://doi.org/10.1038/s41598-021-03431-4 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Marquet, C. et al. Embeddings from protein language models predict conservation and variant effects. Hum. Genet. 141, 1629–1647. https://doi.org/10.1007/s00439-021-02411-y (2022).Article 
CAS 
PubMed 

Google Scholar 
Ilzhöfer, D., Heinzinger, M. & Rost, B. SETH predicts nuances of residue disorder from protein embeddings. Front. Bioinform. 2, 1 (2022).Article 

Google Scholar 
Stärk, H., Dallago, C., Heinzinger, M. & Rost, B. Light attention predicts protein location from the language of life. Bioinform. Adv. 1, 035. https://doi.org/10.1093/bioadv/vbab035 (2021).Article 

Google Scholar 
Weissenow, K., Heinzinger, M. & Rost, B. Protein language-model embeddings for fast, accurate, and alignment-free protein structure prediction. Structure 30, 1169–1177. https://doi.org/10.1016/j.str.2022.05.001 (2022).Article 
CAS 
PubMed 

Google Scholar 
Bernhofer, M. et al. PredictProtein—Predicting protein structure and function for 29 years. Nucleic Acids Res. https://doi.org/10.1093/nar/gkab354 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028. https://doi.org/10.1038/nbt.3988 (2017).Article 
CAS 
PubMed 

Google Scholar 
Dunker, A. K. et al. What’s in a name? Why these proteins are intrinsically disordered. Intrins. Disord. Proteins 1, e24157 (2013).Article 

Google Scholar 
Del Conte, A. et al. CAID prediction portal: A comprehensive service for predicting intrinsic disorder and binding regions in proteins. Nucleic Acids Res. https://doi.org/10.1093/nar/gkad430 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Liu, J., Tan, H. & Rost, B. Loopy proteins appear conserved in evolution. J. Mol. Biol. 322, 53–64 (2002).Article 
CAS 
PubMed 

Google Scholar 
Schelling, M., Hopf, T. A. & Rost, B. Evolutionary couplings and sequence variation effect predict protein binding sites. Proteins 86, 1064–1074. https://doi.org/10.1002/prot.25585 (2018).Article 
CAS 
PubMed 

Google Scholar 
Tsirigos, K. D., Peters, C., Shu, N., Käll, L. & Elofsson, A. The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides. Nucleic Acids Res. 43, W401–W407. https://doi.org/10.1093/nar/gkv485 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hayat, S., Peters, C., Shu, N., Tsirigos, K. D. & Elofsson, A. Inclusion of dyad-repeat pattern improves topology prediction of transmembrane β-barrel proteins. Bioinformatics 32, 1571–1573. https://doi.org/10.1093/bioinformatics/btw025 (2016).Article 
CAS 
PubMed 

Google Scholar 
Hendrickson, W. A. Atomic-level analysis of membrane-protein structure. Nat. Struct. Mol. Biol. 23, 464–467. https://doi.org/10.1038/nsmb.3215 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Newport, T. D., Sansom, M. S. P. & Stansfeld, P. J. The MemProtMD database: A resource for membrane-embedded protein structures and their lipid interactions. Nucleic Acids Res. 47, D390–D397. https://doi.org/10.1093/nar/gky1047 (2019).Article 
CAS 
PubMed 

Google Scholar 
Varga, J., Dobson, L., Reményi, I. & Tusnády, G. E. TSTMP: Target selection for structural genomics of human transmembrane proteins. Nucleic Acids Res. 45, D325–D330. https://doi.org/10.1093/nar/gkw939 (2017).Article 
CAS 
PubMed 

Google Scholar 
Teufel, F. et al. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat. Biotechnol. 40, 1023–1025. https://doi.org/10.1038/s41587-021-01156-3 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Nallapareddy, V. et al. CATHe: Detection of remote homologues for CATH superfamilies using embeddings from protein language models. Bioinformatics 1, 029. https://doi.org/10.1093/bioinformatics/btad029 (2023).Article 
CAS 

Google Scholar 
Bepler, T. & Berger, B. Learning the protein language: Evolution, structure, and function. Cell Syst. 12, 654–669. https://doi.org/10.1016/j.cels.2021.05.017 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dass, R., Mulder, F. A. A. & Nielsen, J. T. ODiNPred: Comprehensive prediction of protein order and disorder. Sci. Rep. 10, 14780. https://doi.org/10.1038/s41598-020-71716-1 (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Haas, J. et al. Continuous automated model evaluation (CAMEO) complementing the critical assessment of structure prediction in CASP12. Proteins Struct. Funct. Bioinform. 86, 387–398. https://doi.org/10.1002/prot.25431 (2018).Article 
CAS 

Google Scholar 
Weissenow, K., Heinzinger, M., Steinegger, M. & Rost, B. Ultra-fast protein structure prediction to capture effects of sequence variation in mutation movies. BioRxiv. https://doi.org/10.1101/2022.11.14.516473 (2022).Article 

Google Scholar 
Notin, P. et al. Tranception: Protein fitness prediction with autoregressive transformers and inference-time retrieval. https://doi.org/10.48550/ARXIV.2205.13760 (2022).Weile, J. & Roth, F. P. Multiplexed assays of variant effects contribute to a growing genotype–phenotype atlas. Hum. Genet. 137, 665–678. https://doi.org/10.1007/s00439-018-1916-x (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fowler, D. M. & Fields, S. Deep mutational scanning: A new style of protein science. Nat. Methods 11, 801–807. https://doi.org/10.1038/nmeth.3027 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ashburner, M. et al. Gene Ontology: Tool for the unification of biology. Nat. Genet. 25, 25–29. https://doi.org/10.1038/75556 (2000).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhou, N. et al. The CAFA challenge reports improved protein function prediction and new functional annotations for hundreds of genes through experimental screens. Genome Biol. 20, 244. https://doi.org/10.1186/s13059-019-1835-8 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rojano, E. et al. Assigning protein function from domain-function associations using DomFun. BMC Bioinform. 23, 43. https://doi.org/10.1186/s12859-022-04565-6 (2022).Article 
CAS 

Google Scholar 
Littmann, M., Heinzinger, M., Dallago, C., Olenyi, T. & Rost, B. Embeddings from deep learning transfer GO annotations beyond homology. Sci. Rep. 11, 1160. https://doi.org/10.1038/s41598-020-80786-0 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
You, R. et al. GOLabeler: Improving sequence-based large-scale protein function prediction by learning to rank. Bioinformatics 34, 2465–2473. https://doi.org/10.1093/bioinformatics/bty130 (2018).Article 
CAS 
PubMed 

Google Scholar 
Abriata, L. A., Tamò, G. E., Monastyrskyy, B., Kryshtafovych, A. & DalPeraro, M. Assessment of hard target modeling in CASP12 reveals an emerging role of alignment-based contact prediction methods. Proteins Struct. Funct. Bioinform. 86, 97–112. https://doi.org/10.1002/prot.25423 (2018).Article 
CAS 

Google Scholar 
Klausen, M. S. et al. NetSurfP-2.0: Improved prediction of protein structural features by integrated deep learning. Proteins Struct. Funct. Bioinform. 87, 520–527. https://doi.org/10.1002/prot.25674 (2019).Article 
CAS 

Google Scholar 
Elnaggar, A. et al. Ankh: Optimized modelling protein language model unlocks general-purpose (2023).Kryshtafovych, A., Schwede, T., Topf, M., Fidelis, K. & Moult, J. Critical assessment of methods of protein structure prediction (CASP)—Round XIV. Proteins Struct. Funct. Bioinform. 89, 1607–1617. https://doi.org/10.1002/prot.26237 (2021).Article 
CAS 

Google Scholar 
Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379, 1123–1130. https://doi.org/10.1126/science.ade2574 (2023).Article 
ADS 
MathSciNet 
CAS 
PubMed 

Google Scholar 
Almagro Armenteros, J. J. et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37, 420–423. https://doi.org/10.1038/s41587-019-0036-z (2019).Article 
CAS 
PubMed 

Google Scholar 
Riesselman, A. J., Ingraham, J. B. & Marks, D. S. Deep generative models of genetic variation capture the effects of mutations. Nat. Methods 15, 816–822. https://doi.org/10.1038/s41592-018-0138-4 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Laine, E., Karami, Y. & Carbone, A. GEMME: A simple and fast global epistatic model predicting mutational effects. Mol. Biol. Evol. 36, 2604–2619. https://doi.org/10.1093/molbev/msz179 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Meier, J. et al. Language models enable zero-shot prediction of the effects of mutations on protein function. BioRxiv. https://doi.org/10.1101/2021.07.09.450648 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410. https://doi.org/10.1016/s0022-2836(05)80360-2 (1990).Article 
CAS 
PubMed 

Google Scholar 
Fox, N. K., Brenner, S. E. & Chandonia, J.-M. SCOPe: Structural classification of proteins—Extended, integrating SCOP and ASTRAL data and classification of new structures. Nucleic Acids Res. 42, D304–D309. https://doi.org/10.1093/nar/gkt1240 (2014).Article 
CAS 
PubMed 

Google Scholar 
Zhang, Y. & Skolnick, J. TM-align: A protein structure alignment algorithm based on the TM-score. Nucleic Acids Res. 33, 2302–2309. https://doi.org/10.1093/nar/gki524 (2005).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Almagro Armenteros, J. J., Sønderby, C. K., Sønderby, S. K., Nielsen, H. & Winther, O. DeepLoc: Prediction of protein subcellular localization using deep learning. Bioinformatics 33, 3387–3395. https://doi.org/10.1093/bioinformatics/btx431 (2017).Article 
CAS 
PubMed 

Google Scholar 
Xia, Y., Huang, E. S., Levitt, M. & Samudrala, R. Ab initio construction of protein tertiary structures using a hierarchical approach. J. Mol. Biol. 300, 171–185 (2000).Article 
CAS 
PubMed 

Google Scholar 
Lin, Z. et al. Language models of protein sequences at the scale of evolution enable accurate structure prediction. BioRxiv. https://doi.org/10.1101/2022.07.20.500902 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Steinegger, M., Mirdita, M. & Soding, J. Protein-level assembly increases protein sequence recovery from metagenomic samples manyfold. Nat. Methods 16, 603–606. https://doi.org/10.1038/s41592-019-0437-4 (2019).Article 
CAS 
PubMed 

Google Scholar 
Devos, D. & Valencia, A. Practical limits of function prediction. Proteins Struct. Funct. Bioinform. 41, 98–107. https://doi.org/10.1002/1097-0134(20001001)41:1%3c98::AID-PROT120%3e3.0.CO;2-S (2000).Article 
CAS 

Google Scholar 
Rost, B. Twilight zone of protein sequence alignments. Protein Eng. Des. Sel. 12, 85–94. https://doi.org/10.1093/protein/12.2.85 (1999).Article 
CAS 

Google Scholar 
Peters, M. E. et al. Deep contextualized word representations. http://arXiv.org/1802.05365 (2018).Devlin, J., Chang, M., Lee, K. & Toutanova, K. BERT: Pre-training of deep bidirectional transformers for language understanding (2019).Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. https://doi.org/10.48550/ARXIV.1910.10683 (2020).Vaswani, A. et al. Proc. 31st International Conference on Neural Information Processing Systems 6000–6010 (Curran Associates Inc., Long Beach, 2017).Nielsen, J. T. & Mulder, F. A. A. There is diversity in disorder—“In all chaos there is a cosmos, in all disorder a secret order”. Front. Mol. Biosci. 3, 4. https://doi.org/10.3389/fmolb.2016.00004 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Lange, J., Wyrwicz, L. S. & Vriend, G. KMAD: Knowledge-based multiple sequence alignment for intrinsically disordered proteins. Bioinformatics 32, 932–936. https://doi.org/10.1093/bioinformatics/btv663 (2016).Article 
CAS 
PubMed 

Google Scholar 
Radivojac, P., Obradovic, Z., Brown, C. J. & Dunker, A. K. Improving sequence alignments for intrinsically disordered proteins. Pac. Symp. Biocomput. 1, 589–600 (2002).
Google Scholar 
Riley, A. C., Ashlock, D. A. & Graether, S. P. The difficulty of aligning intrinsically disordered protein sequences as assessed by conservation and phylogeny. PLoS ONE 18, e0288388. https://doi.org/10.1371/journal.pone.0288388 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Brown, C. J. et al. Evolutionary rate heterogeneity in proteins with long disordered regions. J. Mol. Evol. 55, 104–110. https://doi.org/10.1007/s00239-001-2309-6 (2002).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Huang, H. & Sarai, A. Analysis of the relationships between evolvability, thermodynamics, and the functions of intrinsically disordered proteins/regions. Comput. Biol. Chem. 41, 51–57. https://doi.org/10.1016/j.compbiolchem.2012.10.001 (2012).Article 
CAS 
PubMed 

Google Scholar 
Ahnert, S. E., Marsh, J. A., Hernandez, H., Robinson, C. V. & Teichmann, S. A. Principles of assembly reveal a periodic table of protein complexes. Science 350, 2245. https://doi.org/10.1126/science.aaa2245 (2015).Article 
CAS 

Google Scholar 
Ponting, C. P. & Russell, R. R. The natural history of protein domains. Annu. Rev. Biophys. Biomol. Struct. 31, 45–71. https://doi.org/10.1146/annurev.biophys.31.082901.134314 (2002).Article 
CAS 
PubMed 

Google Scholar 
Rey, F. A. One protein, many functions. Nature 468, 773–775. https://doi.org/10.1038/468773a (2010).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Wells, J., Hawkins-Hooker, A., Bordin, N., Paige, B. & Orengo, C. Chainsaw: Protein domain segmentation with fully convolutional neural networks. BioRxiv. https://doi.org/10.1101/2023.07.19.549732 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Schütze, K., Heinzinger, M., Steinegger, M. & Rost, B. Nearest neighbor search on embeddings rapidly identifies distant protein relations. Front. Bioinform. https://doi.org/10.3389/fbinf.2022.1033775 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Berman, H. M. et al. The protein data bank. Nucleic Acids Res. 28, 235–242. https://doi.org/10.1093/nar/28.1.235 (2000).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Joosten, R. P., Long, F., Murshudov, G. N. & Perrakis, A. ThePDB_REDOserver for macromolecular structure model optimization. IUCrJ 1, 213–220. https://doi.org/10.1107/s2052252514009324 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sillitoe, I. et al. CATH: Increased structural coverage of functional space. Nucleic Acids Res. 49, D266–D273. https://doi.org/10.1093/nar/gkaa1079 (2021).Article 
CAS 
PubMed 

Google Scholar 
Sander, C. & Schneider, R. Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins 9, 56–68. https://doi.org/10.1002/prot.340090107 (1991).Article 
CAS 
PubMed 

Google Scholar 
Mika, S. UniqueProt: Creating representative protein sequence sets. Nucleic Acids Res. 31, 3789–3791. https://doi.org/10.1093/nar/gkg620 (2003).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kabsch, W. & Sander, C. Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637. https://doi.org/10.1002/bip.360221211 (1983).Article 
CAS 
PubMed 

Google Scholar 
Howard, M. J. Protein NMR spectroscopy. Curr. Biol. 8, R331–R333. https://doi.org/10.1016/S0960-9822(98)70214-3 (1998).Article 
CAS 
PubMed 

Google Scholar 
Nielsen, J. T. & Mulder, F. A. A. In Intrinsically Disordered Proteins: Methods and Protocols (eds Kragelund, B. B. & Skriver, K.) 303–317 (Springer, 2020).Chapter 

Google Scholar 
Suzek, B. E. et al. UniRef clusters: A comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics 31, 926–932. https://doi.org/10.1093/bioinformatics/btu739 (2015).Article 
CAS 
PubMed 

Google Scholar 
Ben Chorin, A. et al. ConSurf-DB: An accessible repository for the evolutionary conservation patterns of the majority of PDB proteins. Protein Sci. 29, 258–267. https://doi.org/10.1002/pro.3779 (2020).Article 
CAS 
PubMed 

Google Scholar 
Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 20, 1160–1166. https://doi.org/10.1093/bib/bbx108 (2019).Article 
CAS 
PubMed 

Google Scholar 
Fukushima, K. Cognitron: A self-organizing multilayered neural network. Biol. Cybern. 20, 121–136. https://doi.org/10.1007/BF00342633 (1975).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles