Key role of paracrystalline motifs on iridium oxide surfaces for acidic water oxidation

Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).Article 
PubMed 

Google Scholar 
Nong, H. N. et al. Key role of chemistry versus bias in electrocatalytic oxygen evolution. Nature 587, 408–413 (2020).Article 
CAS 
PubMed 

Google Scholar 
Ben-Naim, M. et al. Understanding degradation mMechanisms in SrIrO3 oxygen evolution electrocatalysts: chemical and structural microscopy at the nanoscale. Adv. Funct. Mater. 31, 2101542 (2021).Article 
CAS 

Google Scholar 
Lin, C. et al. In-situ reconstructed Ru atom array on α-MnO2 with enhanced performance for acidic water oxidation. Nat. Catal. 4, 1012–1023 (2021).Article 
CAS 

Google Scholar 
Li, A. L. et al. Enhancing the stability of cobalt spinel oxide towards sustainable oxygen evolution in acid. Nat. Catal. 5, 109–118 (2022).Article 
CAS 

Google Scholar 
Gunasooriya, G. T. K. K. & Nørskov, J. K. Analysis of acid-stable and active oxides for the oxygen evolution reaction. ACS Energy Lett. 5, 3778–3787 (2020).Article 
CAS 

Google Scholar 
Wu, Z. Y. et al. Non-iridium-based electrocatalyst for durable acidic oxygen evolution reaction in proton exchange membrane water electrolysis. Nat. Mater. 22, 100–108 (2022).Article 
PubMed 

Google Scholar 
Hao, S. et al. Torsion strained iridium oxide for efficient acidic water oxidation in proton exchange membrane electrolyzers. Nat. Nanotechnol. 16, 1371–1377 (2021).Article 
CAS 
PubMed 

Google Scholar 
Seitz, L. C. et al. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 353, 1011–1014 (2016).Article 
CAS 
PubMed 

Google Scholar 
Diaz-Morales, O. et al. Iridium-based double perovskites for efficient water oxidation in acid media. Nat. Commun. 7, 12363 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yang, L. et al. Efficient oxygen evolution electrocatalysis in acid by a perovskite with face-sharing IrO6 octahedral dimers. Nat. Commun. 9, 5236 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, R. et al. First example of protonation of Ruddlesden–Popper Sr2IrO4: a route to enhanced water oxidation catalysts. Chem. Mater. 32, 3499–3509 (2020).Article 
CAS 

Google Scholar 
Lebedev, D. et al. Highly active and stable iridium pyrochlores for oxygen evolution reaction. Chem. Mater. 29, 5182–5191 (2017).Article 
CAS 

Google Scholar 
Lee, K., Osada, M., Hwang, H. Y. & Hikita, Y. Oxygen evolution reaction activity in IrOx/SrIrO3 catalysts: correlations between structural parameters and the catalytic activity. J. Phys. Chem. Lett. 10, 1516–1522 (2019).Article 
CAS 
PubMed 

Google Scholar 
Li, L. et al. Probing electrochemically induced structural evolution and oxygen redox reactions in layered lithium iridate. Chem. Mater. 31, 4341–4352 (2019).Article 
CAS 

Google Scholar 
Wu, Y. Y. et al. Highly efficient oxygen evolution activity of Ca2IrO4 in an acidic environment due to its crystal configuration. ACS Omega 3, 2902–2908 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, N. et al. Identification of the active-layer structures for acidic oxygen evolution from 9R-BaIrO3 electrocatalyst with enhanced iridium mass activity. J. Am. Chem. Soc. 143, 18001–18009 (2021).Article 
CAS 
PubMed 

Google Scholar 
Ma, C. et al. Lanthanides regulated the amorphization–crystallization of IrO2 for outstanding OER performance. ACS Appl. Mater. Interfaces 12, 34980–34989 (2020).Article 
CAS 
PubMed 

Google Scholar 
Yang, L. et al. Enhanced iridium mass activity of 6H-phase, Ir-based perovskite with nonprecious incorporation for acidic oxygen evolution electrocatalysis. ACS Appl. Mater. Interfaces 11, 42006–42013 (2019).Article 
CAS 
PubMed 

Google Scholar 
Retuerto, M. et al. How oxidation state and lattice distortion influence the oxygen evolution activity in acid of iridium double perovskites. J. Mater. Chem. A 9, 2980–2990 (2021).Article 
CAS 

Google Scholar 
Edgington, J., Schweitzer, N., Alayoglu, S. & Seitz, L. C. Constant change: exploring dynamic oxygen evolution reaction catalysis and material transformations in strontium zinc iridate perovskite in acid. J. Am. Chem. Soc. 143, 9961–9971 (2021).Article 
CAS 
PubMed 

Google Scholar 
Chen, Y. et al. Lattice site-dependent metal leaching in perovskites toward a honeycomb-like water oxidation catalyst. Sci. Adv. 7, eabk1788 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, Y. B. et al. Exceptionally active iridium evolved from a pseudo-cubic perovskite for oxygen evolution in acid. Nat. Commun. 10, 572 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yun, T. G. et al. Surface dissolution and amorphization of electrocatalysts during oxygen evolution reaction: atomistic features and viewpoints. Mater. Today 58, 221–237 (2022).Article 
CAS 

Google Scholar 
Wan, G. et al. Amorphization mechanism of SrIrO3 electrocatalyst: how oxygen redox initiates ionic diffusion and structural reorganization. Sci. Adv. 7, eabc7323 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Song, C. W., Suh, H., Bak, J., Bae, H. B. & Chung, S. Y. Dissolution-induced surface roughening and oxygen evolution electrocatalysis of alkaline-earth iridates in acid. Chem 5, 3243–3259 (2019).Article 
CAS 

Google Scholar 
Flores, R. A. et al. Active learning accelerated discovery of stable iridium oxide polymorphs for the oxygen evolution reaction. Chem. Mater. 32, 5854–5863 (2020).Article 
CAS 

Google Scholar 
Lee, S., Lee, Y. J., Lee, G. & Soon, A. Activated chemical bonds in nanoporous and amorphous iridium oxides favor low overpotential for oxygen evolution reaction. Nat. Commun. 13, 3171 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mehta, P., Salvador, P. A. & Kitchin, J. R. Identifying potential BO2 oxide polymorphs for epitaxial growth candidates. ACS Appl. Mater. Interfaces 6, 3630–3639 (2014).Article 
CAS 
PubMed 

Google Scholar 
Willinger, E., Massue, C., Schlogl, R. & Willinger, M. G. Identifying key structural features of IrOx water splitting catalysts. J. Am. Chem. Soc. 139, 12093–12101 (2017).Article 
CAS 
PubMed 

Google Scholar 
Man, I. C. et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3, 1159–1165 (2011).Article 
CAS 

Google Scholar 
Deng, X., Chen, K. & Tüysüz, H. Protocol for the nanocasting method: preparation of ordered mesoporous metal oxides. Chem. Mater. 29, 40–52 (2017).Article 
CAS 

Google Scholar 
Savitzky, B. H. et al. py4DSTEM: a software package for four-dimensional scanning transmission electron microscopy data analysis. Microsc. Microanal. 27, 712–743 (2021).Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).Article 
CAS 
PubMed 

Google Scholar 
Agrestini, S. et al. Nature of the magnetism of iridium in the double perovskite Sr2CoIrO6. Phys. Rev. B 100, 014443 (2019).Article 
CAS 

Google Scholar 
Sardar, K. et al. Water‐splitting electrocatalysis in acid conditions using ruthenate‐iridate pyrochlores. Angew. Chem. Int. Ed. 53, 10960–10964 (2014).Article 
CAS 

Google Scholar 
Li, N. et al. Operando direct observation of Stable water-oxidation intermediates on Ca2−xIrO4 nanocrystals for efficient acidic oxygen evolution. Nano Lett. 22, 6988–6996 (2022).Article 
CAS 
PubMed 

Google Scholar 
Jain, A. et al. Commentary: the Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).Article 

Google Scholar 
Toby, B. H. & Von Dreele, R. B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 46, 544–549 (2013).Article 
CAS 

Google Scholar 
Juhas, P., Davis, T., Farrow, C. L. & Billinge, S. J. L. PDFgetX3: a rapid and highly automatable program for processing powder diffraction data into total scattering pair distribution functions. J. Appl. Crystallogr. 46, 560–566 (2013).Article 
CAS 

Google Scholar 
Farrow, C. L. et al. PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals. J. Phys. Condens. Matter 19, 335219 (2007).Article 
CAS 
PubMed 

Google Scholar 
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).Article 
CAS 
PubMed 

Google Scholar 
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).Article 
CAS 

Google Scholar 
Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).Article 
CAS 

Google Scholar 
Ong, S. P. et al. Python Materials Genomics (pymatgen): a robust, open-source python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013).Article 
CAS 

Google Scholar 
Hjorth Larsen, A. et al. The atomic simulation environment—a Python library for working with atoms. J. Phys. Condens. Matter 29, 273002 (2017).Article 
PubMed 

Google Scholar 
Henkelman, G., Arnaldsson, A. & Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 36, 354–360 (2006).Article 

Google Scholar 

Hot Topics

Related Articles