Stimuli-responsive smart polymers based on functional dyes

Ooyama Y, Yagi S. Progress in the science of functional dyes. Singapore: Springer; 2021.Heskins M, Guillet JE. Solution properties of Poly(N-isopropylacrylamide). J Macromol Sci A. 1968;2:1441–55.Article 
CAS 

Google Scholar 
Schild HG. Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci. 1992;17:163–249.Article 
CAS 

Google Scholar 
Halperin A, Kröger M, Winnik FM. Poly(N-isopropylacrylamide) phase diagrams: fifty years of research. Angew Chem Int Ed. 2015;54:15342–67.Article 
CAS 

Google Scholar 
Shaibie NA, Ramli NA, Faizal NDFM, Srichana T, Amin MCIM. Poly(N-isopropylacrylamide)-based polymers: recent overview for the development of temperature-responsive drug delivery and biomedical applications. Macromol Chem Phys 2023;224:2300157.Article 
CAS 

Google Scholar 
Das A, Babu A, Chakraborty S, Guyse JFR V, Hoogenboom R, Maji S. Poly(N-isopropylacrylamide) and its copolymers: a review on recent advances in the areas of sensing and biosensing. Adv Funct Mater. 2024;34:2402432.Article 

Google Scholar 
Herbert KM, Schrettl S, Rowan SJ, Weder C. 50th anniversary perspective: solid-state multistimuli, multiresponsive polymeric materials. Macromolecules. 2017;50:8845–70.Article 
CAS 

Google Scholar 
Wang S, Liu Q, Li L, Urban MW. Recent advances in stimuli-responsive commodity polymers. Macromol Rapid Commun. 2021;42:e2100054.Article 
PubMed 

Google Scholar 
Png ZM, Wang C-G, Yeo JCC, Lee JJC, Surat’man NE, Tan YL, et al. Stimuli-responsive structure–property switchable polymer materials. Mol Syst Des Eng. 2023;8:1097–129.Article 
CAS 

Google Scholar 
Wang S, Urban MW. Redefining polymer science via multi-stimulus responsiveness. Chem. 2023;9:1362–77.Article 
CAS 

Google Scholar 
Klán P, Šolomek T, Bochet CG, Blanc A, Givens R, Rubina M, et al. Photoremovable protecting groups in chemistry and biology: reaction mechanisms and efficacy. Chem Rev. 2013;113:119–91.Article 
PubMed 

Google Scholar 
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-light activated release: from small molecules to nanomaterials. Chem Rev 2020;120:13135–272.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Josa-Culleré L, Llebaria A. In the search for photocages cleavable with visible light: an overview of recent advances and chemical strategies. ChemPhotoChem. 2021;5:296–314.Article 

Google Scholar 
Pianowski ZL. Recent implementations of molecular photoswitches into smart materials and biological systems. Chem Eur J 2019;25:5128–44.Article 
CAS 
PubMed 

Google Scholar 
Lu P, Ahn D, Yunis R, Delafresnaye L, Corrigan N, Boyer C, et al. Wavelength-selective light-matter interactions in polymer science. Matter. 2021;4:2172–229.Article 
CAS 

Google Scholar 
Volarić J, Szymanski W, Simeth NA, Feringa BL. Molecular photoswitches in aqueous environments. Chem Soc Rev. 2021;50:12377–449.Article 
PubMed 
PubMed Central 

Google Scholar 
Zhang Z, Wang W, O’Hagan M, Dai J, Zhang J, Tian H. Stepping out of the blue: from visible to near-IR triggered photoswitches. Angew Chem Int Ed. 2022;61:e202205758.Article 
CAS 

Google Scholar 
Leistner A, Pianowski ZL. Smart photochromic materials triggered with visible light. Eur J Org Chem. 2022;2022:e202101271.Article 
CAS 

Google Scholar 
Kassem S, Leeuwen T, van, Lubbe AS, Wilson MR, Feringa BL, Leigh DA. Artificial molecular motors. Chem Soc Rev. 2017;46:2592–621.Article 
CAS 
PubMed 

Google Scholar 
Roke D, Wezenberg SJ, Feringa BL. Molecular rotary motors: unidirectional motion around double bonds. Proc Natl Acad Sci USA. 2018;115:201712784.Article 

Google Scholar 
Corra S, Curcio M, Baroncini M, Silvi S, Credi A. Photoactivated artificial molecular machines that can perform tasks. Adv Mater. 2020;32:1906064.Article 
CAS 

Google Scholar 
Zhang Q, Qu D-H, Tian H, Feringa BL. Bottom-up: can supramolecular tools deliver responsiveness from molecular motors to macroscopic materials? Matter. 2020;3:355–70.Article 

Google Scholar 
Baroncini M, Silvi S, Credi A. Photo- and redox-driven artificial molecular motors. Chem Rev 2020;120:200–68.Article 
CAS 
PubMed 

Google Scholar 
Costil R, Holzheimer M, Crespi S, Simeth NA, Feringa BL. Directing coupled motion with light: a key step toward machine-like function. Chem Rev. 2021;121:13213–37.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Corra S, Curcio M, Credi A. Photoactivated artificial molecular motors. JACS Au. 2023;3:1301–13.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sheng J, Pooler DRS, Feringa BL. Enlightening dynamic functions in molecular systems by intrinsically chiral light-driven molecular motors. Chem Soc Rev. 2023;52:5875–91.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ohira K, Kozuka K, Kaneda N, Yamamoto M, Imato K, Ooyama Y. Photochromism of phenazine-2,3-diol derivatives through excited state intermolecular proton transfer based on keto–enol tautomerization. Org Biomol Chem. 2024;22:4077–88.Article 
CAS 
PubMed 

Google Scholar 
Bandara HMD, Burdette SC. Photoisomerization in different classes of azobenzene. Chem Soc Rev. 2012;41:1809–25.Article 
CAS 
PubMed 

Google Scholar 
Crespi S, Simeth NA, König B. Heteroaryl azo dyes as molecular photoswitches. Nat Rev Chem. 2019;3:133–46.Article 
CAS 

Google Scholar 
Gao M, Kwaria D, Norikane Y, Yue Y. Visible-light-switchable azobenzenes: molecular design, supramolecular systems, and applications. Nat Sci 2023;3:e220020.Article 
CAS 

Google Scholar 
Mukherjee A, Seyfried MD, Ravoo BJ. Azoheteroarene and diazocine molecular photoswitches: self-assembly, responsive materials and photopharmacology. Angew Chem Int Ed. 2023;62:e202304437.Article 
CAS 

Google Scholar 
Irie M, Fukaminato T, Matsuda K, Kobatake S. Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem Rev. 2014;114:12174–277.Article 
CAS 
PubMed 

Google Scholar 
Villarón D, Wezenberg SJ. Stiff-stilbene photoswitches: from fundamental studies to emergent applications. Angew Chem Int Ed. 2020;59:13192–202.Article 

Google Scholar 
Greb L, Eichhöfer A, Lehn J. Internal C–C bond rotation in photoisomers of α-bisimines: a light-responsive two-step molecular speed regulator based on double imine photoswitching. Eur J Org Chem. 2016;2016:1243–6.Article 
CAS 

Google Scholar 
Wu J, Kreimendahl L, Tao S, Anhalt O, Greenfield JL. Photoswitchable imines: aryliminopyrazoles quantitatively convert to long-lived Z-isomers with visible light. Chem Sci. 2024;15:3872–8.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shao B, Aprahamian I. Hydrazones as new molecular tools. Chem. 2020;6:2162–73.Article 
CAS 

Google Scholar 
Qian H, Pramanik S, Aprahamian I. Photochromic hydrazone switches with extremely long thermal half-lives. J Am Chem Soc. 2017;139:9140–3.Article 
CAS 
PubMed 

Google Scholar 
Shao B, Baroncini M, Qian H, Bussotti L, Donato MD, Credi A, et al. Solution and solid-state emission toggling of a photochromic hydrazone. J Am Chem Soc. 2018;140:12323–7.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li Q, Qian H, Shao B, Hughes RP, Aprahamian I. Building strain with large macrocycles and using it to tune the thermal half-lives of hydrazone photochromes. J Am Chem Soc. 2018;140:11829–35.Article 
CAS 
PubMed 

Google Scholar 
Shao B, Qian H, Li Q, Aprahamian I. Structure property analysis of the solution and solid-state properties of bistable photochromic hydrazones. J Am Chem Soc. 2019;141:8364–71.Article 
CAS 
PubMed 

Google Scholar 
Petermayer C, Dube H. Indigoid photoswitches: visible light responsive molecular tools. Acc Chem Res. 2018;51:1153–63.Article 
CAS 
PubMed 

Google Scholar 
Huang C, Hecht S. A blueprint for transforming indigos to photoresponsive molecular tools. Chem Eur J. 2023;29:e202300981Article 
CAS 
PubMed 

Google Scholar 
Kaplan G, Seferoğlu Z, Berdnikova DV. Photochromic derivatives of indigo: historical overview of development, challenges and applications. Beilstein J Org Chem. 2024;20:228–42.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wiedbrauk S, Dube H. Hemithioindigo—an emerging photoswitch. Tetrahedron Lett. 2015;56:4266–74.Article 
CAS 

Google Scholar 
Berdnikova DV. Aurones: unexplored visible-light photoswitches for aqueous medium. Chem Eur J 2024;30:e202304237.Article 
CAS 
PubMed 

Google Scholar 
Hoorens MWH, Medved’ M, Laurent AD, Donato MD, Fanetti S, Slappendel L, et al. Iminothioindoxyl as a molecular photoswitch with 100 nm band separation in the visible range. Nat Commun. 2019;10:2390.Article 
PubMed 
PubMed Central 

Google Scholar 
Crespi S, Simeth NA, Donato MD, Doria S, Stindt CN, Hilbers MF, et al. Phenylimino indolinone: a green-light-responsive T-type photoswitch exhibiting negative photochromism. Angew Chem Int Ed. 2021;60:25290–5.Article 
CAS 

Google Scholar 
Mitchell RH. The metacyclophanediene-dihydropyrene photochromic π switch. Eur J Org Chem. 1999;1999:2695–703.Article 

Google Scholar 
Hemauer F, Steinrück H, Papp C. The norbornadiene/quadricyclane pair as molecular solar thermal energy storage system: surface science investigations. ChemPhysChem. 2024;25:e202300806.Article 
CAS 
PubMed 

Google Scholar 
Matsushima R, Sakaguchi H. Comparison of the photochromic properties of fulgides and fulgimides. J Photochem Photobiol A Chem. 1997;108:239–45.Article 
CAS 

Google Scholar 
Copko J, Slanina T. Multiplicity-driven photochromism controls three-state fulgimide photoswitches. Chem Commun. 2024;60:3774–7.Article 
CAS 

Google Scholar 
Bar N, Chowdhury P. A brief review on advances in rhodamine b based chromic materials and their prospects. ACS Appl Electron Mater. 2022;4:3749–71.Article 
CAS 

Google Scholar 
Broman SL, Nielsen MB. Dihydroazulene: from controlling photochromism to molecular electronics devices. Phys Chem Chem Phys. 2014;16:21172–82.Article 
CAS 
PubMed 

Google Scholar 
Lerch MM, Szymański W, Feringa BL. The (photo)chemistry of Stenhouse photoswitches: guiding principles and system design. Chem Soc Rev. 2018;47:1910–37.Article 
CAS 
PubMed 

Google Scholar 
Clerc M, Sandlass S, Rifaie-Graham O, Peterson JA, Bruns N, Alaniz JRde, et al. Visible light-responsive materials: the (photo)chemistry and applications of donor–acceptor Stenhouse adducts in polymer science. Chem Soc Rev. 2023;52:8245–94.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gulati GK, Gulati LK, Kumar S. Recent progress in multi-stimulable photochromic oxazines with their wide-ranging applications. Dyes Pigm. 2021;192:109445.Article 
CAS 

Google Scholar 
Komura M, Ogawa T, Tani Y. Room-temperature phosphorescence of a supercooled liquid: kinetic stabilisation by desymmetrisation. Chem Sci. 2021;12:14363–8.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Komura M, Sotome H, Miyasaka H, Ogawa T, Tani Y. Photoinduced crystal melting with luminescence evolution based on conformational isomerisation. Chem Sci. 2023;14:5302–8.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Boelke J, Hecht S. Designing molecular photoswitches for soft materials applications. Adv Opt Mater. 2019;7:1900404.Article 

Google Scholar 
Goulet-Hanssens A, Eisenreich F, Hecht S. Enlightening materials with photoswitches. Adv Mater. 2020;32:1905966.Article 
CAS 

Google Scholar 
Dattler D, Fuks G, Heiser J, Moulin E, Perrot A, Yao X, et al. Design of collective motions from synthetic molecular switches, rotors, and motors. Chem Rev. 2020;120:310–433.Article 
CAS 
PubMed 

Google Scholar 
Klajn R. Spiropyran-based dynamic materials. Chem Soc Rev. 2014;43:148–84.Article 
CAS 
PubMed 

Google Scholar 
Kortekaas L, Browne WR. The evolution of spiropyran: fundamentals and progress of an extraordinarily versatile photochrome. Chem Soc Rev. 2019;48:3406–24.Article 
CAS 
PubMed 

Google Scholar 
Nagata K, Kurebayashi T, Imato K, Takeda N. Photoresponsive fiber scaffolds with a core–sheath nanostructure for regulating cell behaviors. J Mater Chem B. 2018;6:2052–6.Article 
CAS 
PubMed 

Google Scholar 
Imato K, Nagata K, Watanabe R, Takeda N. Cell adhesion control by photoinduced LCST shift of PNIPAAm-based brush scaffolds. J Mater Chem B. 2020;8:2393–9.Article 
CAS 
PubMed 

Google Scholar 
Imato K, Momota K, Kaneda N, Imae I, Ooyama Y. Photoswitchable adhesives of spiropyran polymers. Chem Mater. 2022;34:8289–96.Article 
CAS 

Google Scholar 
Hohl DK, Weder C. De)bonding on demand with optically switchable adhesives. Adv Opt Mater. 2019;7:1900230Article 

Google Scholar 
Akiyama H, Yoshida M. Photochemically reversible liquefaction and solidification of single compounds based on a sugar alcohol scaffold with multi azo-arms. Adv Mater. 2012;24:2353–6.Article 
CAS 
PubMed 

Google Scholar 
Zhou H, Xue C, Weis P, Suzuki Y, Huang S, Koynov K, et al. Photoswitching of glass transition temperatures of azobenzene-containing polymers induces reversible solid-to-liquid transitions. Nat Chem. 2017;9:145–51.Article 
CAS 
PubMed 

Google Scholar 
Xu W, Sun S, Wu S. Photoinduced reversible solid-to-liquid transitions for photoswitchable. Mater Angew Chem Int Ed. 2019;58:9712–40.Article 
CAS 

Google Scholar 
Xu G, Li S, Liu C, Wu S. Photoswitchable adhesives using azobenzene-containing materials. Chem Asian J. 2020;15:547–54.Article 
CAS 
PubMed 

Google Scholar 
Hu J, Song T, Yu M-M, Yu H. Optically controlled solid-to-liquid phase transition materials based on azo compounds. Chem Mater. 2023;35:4621–48.Article 
CAS 

Google Scholar 
Imato K, Kaneda N, Ooyama Y. Recent progress in photoinduced transitions between the solid, glass, and liquid states based on molecular photoswitches. Polym J. 2024;56:269–82.Article 
CAS 

Google Scholar 
Inui T, Sato E, Matsumoto A. Pressure-sensitive adhesion system using acrylate block copolymers in response to photoirradiation and postbaking as the dual external stimuli for on-demand dismantling. ACS Appl Mater Interfaces. 2012;4:2124–32.Article 
CAS 
PubMed 

Google Scholar 
Asadirad AM, Boutault S, Erno Z, Branda NR. Controlling a polymer adhesive using light and a molecular switch. J Am Chem Soc 2014;136:3024–7.Article 
CAS 
PubMed 

Google Scholar 
Saito S, Nobusue S, Tsuzaka E, Yuan C, Mori C, Hara M, et al. Light-melt adhesive based on dynamic carbon frameworks in a columnar liquid-crystal phase. Nat Commun. 2016;7:12094.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Oka M, Takagi H, Miyazawa T, Waymouth RM, Honda S. Photocleavable regenerative network materials with exceptional and repeatable viscoelastic manipulability. Adv Sci. 2021;8:2101143.Article 
CAS 

Google Scholar 
Aizawa M, Akiyama H, Matsuzawa Y. Dismantlable adhesion interface featuring a thermo/photocleavable molecular layer. Adv Eng Mater. 2022;24:2100823.Article 
CAS 

Google Scholar 
Aizawa M, Akiyama H, Yamamoto T, Matsuzawa Y. Photo-and heat-induced dismantlable adhesion interfaces prepared by layer-by-layer deposition. Langmuir. 2023;39:2771–8.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kaneko T, Russell GM, Kawano Y, Masai H, Terao J. Fabrication of photoprocessable materials via photopolymerization using an acid-induced photocleavable platinum-acetylide crosslinker. Angew Chem Int Ed. 2023;62:e202305374.Article 
CAS 

Google Scholar 
Matsumoto A. Development of heat-responsive adhesive materials that are stable during use and quickly deteriorate during dismantling. Polym J. 2024;56:223–47.Article 
CAS 

Google Scholar 
Masai H, Nakagawa T, Terao J. Recent progress in photoreactive crosslinkers in polymer network materials toward advanced photocontrollability. Polym J. 2024;56:297–307.Article 
CAS 

Google Scholar 
Aizawa M, Akiyama H, Matsuzawa Y, Shishido A. Reusable dismantlable adhesion interfaces induced by photodimerization and thermo/photocleavage reactions. Polym J. 2024;56:401–8.Article 
CAS 

Google Scholar 
Heinzmann C, Coulibaly S, Roulin A, Fiore GL, Weder C. Light-induced bonding and debonding with supramolecular adhesives. ACS Appl Mater Interfaces. 2014;6:4713–9.Article 
CAS 
PubMed 

Google Scholar 
Kinloch AJ. The science of adhesion. J Mater Sci. 1980;15:2141–66.Article 
CAS 

Google Scholar 
Raos G, Zappone B. Polymer adhesion: seeking new solutions for an old problem. Macromolecules. 2021;54:10617–44.Article 
CAS 

Google Scholar 
Cheng B, Yu J, Arisawa T, Hayashi K, Richardson JJ, Shibuta Y, et al. Ultrastrong underwater adhesion on diverse substrates using non-canonical phenolic groups. Nat Commun. 2022;13:1892.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tannouri P, Arafeh KM, Krahn JM, Beaupré SL, Menon C, Branda NR. A photoresponsive biomimetic dry adhesive based on doped PDMS microstructures. Chem Mater. 2014;26:4330–3.Article 
CAS 

Google Scholar 
Mostafavi SH, Tong F, Dugger TW, Kisailus D, Bardeen CJ. Noncovalent photochromic polymer adhesion. Macromolecules. 2018;51:2388–94.Article 
CAS 

Google Scholar 
Gately TJ, Li W, Mostafavi SH, Bardeen CJ. Reversible adhesion switching using spiropyran photoisomerization in a high glass transition temperature polymer. Macromolecules. 2021;54:9319–26.Article 
CAS 

Google Scholar 
Zhang L, Deng Y, Xie C, Wu Z. Disordered low molecular weight spiropyran exhibiting photoregulated adhesion ability. Chem Eur J. 2022;28:e202200245.Article 
CAS 
PubMed 

Google Scholar 
Caruso MM, Davis DA, Shen Q, Odom SA, Sottos NR, White SR, et al. Mechanically-induced chemical changes in polymeric materials. Chem Rev. 2009;109:5755–98.Article 
CAS 
PubMed 

Google Scholar 
Li J, Nagamani C, Moore JS. Polymer mechanochemistry: from destructive to productive. Acc Chem Res. 2015;48:2181–90.Article 
CAS 
PubMed 

Google Scholar 
Willis-Fox N, Rognin E, Aljohani TA, Daly R. Polymer Mechanochemistry: Manufacturing Is Now a Force to Be Reckoned With. Chem. 2018;4:2499–537.Article 
CAS 

Google Scholar 
Imato K, Otsuka H. Reorganizable and stimuli-responsive polymers based on dynamic carbon–carbon linkages in diarylbibenzofuranones. Polymer. 2018;137:395–413.Article 
CAS 

Google Scholar 
Deneke N, Rencheck ML, Davis CS. An engineer’s introduction to mechanophores. Soft Matter. 2020;16:6230–52.Article 
CAS 
PubMed 

Google Scholar 
Chen Y, Mellot G, Luijk D, van, Creton C, Sijbesma RP. Mechanochemical tools for polymer materials. Chem Soc Rev. 2021;50:4100–40.Article 
CAS 
PubMed 

Google Scholar 
Mu Q, Hu J. Polymer mechanochemistry: from single molecule to bulk material. Phys Chem Chem Phys. 2024;26:679–94.Article 
CAS 
PubMed 

Google Scholar 
Nakahata M, Takashima Y, Yamaguchi H, Harada A. Redox-responsive self-healing materials formed from host–guest polymers. Nat Commun. 2011;2:511.Article 
PubMed 

Google Scholar 
Imato K, Nishihara M, Kanehara T, Amamoto Y, Takahara A, Otsuka H. Self-healing of chemical gels cross-linked by diarylbibenzofuranone-based trigger-free dynamic covalent bonds at room temperature. Angew Chem Int Ed. 2012;51:1138–42.Article 
CAS 

Google Scholar 
Imato K, Ohishi T, Nishihara M, Takahara A, Otsuka H. Network reorganization of dynamic covalent polymer gels with exchangeable diarylbibenzofuranone at ambient temperature. J Am Chem Soc. 2014;136:11839–45.Article 
CAS 
PubMed 

Google Scholar 
Harada A, Takashima Y, Nakahata M. Supramolecular polymeric materials via cyclodextrin–guest interactions. Acc Chem Res. 2014;47:2128–40.Article 
CAS 
PubMed 

Google Scholar 
Imato K, Takahara A, Otsuka H. Self-healing of a cross-linked polymer with dynamic covalent linkages at mild temperature and evaluation at macroscopic and molecular levels. Macromolecules. 2015;48:5632–9.Article 
CAS 

Google Scholar 
Yang Y, Ding X, Urban MW. Chemical and physical aspects of self-healing materials. Prog Polym Sci. 2015;49:34–59.Article 

Google Scholar 
An SY, Arunbabu D, Noh SM, Song YK, Oh JK. Recent strategies to develop self-healable crosslinked polymeric networks. Chem Commun. 2015;51:13058–70.Article 
CAS 

Google Scholar 
Fuhrmann A, Göstl R, Wendt R, Kötteritzsch J, Hager MD, Schubert US, et al. Conditional repair by locally switching the thermal healing capability of dynamic covalent polymers with light. Nat Commun. 2016;7:13623.Article 
PubMed 
PubMed Central 

Google Scholar 
Takahashi A, Goseki R, Otsuka H. Thermally adjustable dynamic disulfide linkages mediated by highly air-stable 2,2,6,6-tetramethylpiperidine-1-sulfanyl (TEMPS) radicals. Angew Chem Int Ed. 2017;56:2016–21.Article 
CAS 

Google Scholar 
Takahashi A, Goseki R, Ito K, Otsuka H. Thermally healable and reprocessable Bis(hindered amino)disulfide-cross-linked polymethacrylate networks. ACS Macro Lett. 2017;6:1280–4.Article 
CAS 
PubMed 

Google Scholar 
Tsuruoka A, Takahashi A, Aoki D, Otsuka H. Fusion of different crosslinked polymers based on dynamic disulfide exchange. Angew Chem Int Ed. 2020;59:4294–8.Article 
CAS 

Google Scholar 
Imato K, Nakajima H, Yamanaka R, Takeda N. Self-healing polyurethane elastomers based on charge-transfer interactions for biomedical applications. Polym J. 2021;53:355–62.Article 
CAS 

Google Scholar 
Liu T, Wang L, Xu J, Fu J. High-performance healable plastics: focusing topological structure design based on constitutional dynamic chemistry. EcoMat. 2023;5:e12412.Article 
CAS 

Google Scholar 
Balkenende DWR, Coulibaly S, Balog S, Simon YC, Fiore GL, Weder C. Mechanochemistry with metallosupramolecular polymers. J Am Chem Soc. 2014;136:10493–8.Article 
CAS 
PubMed 

Google Scholar 
Imato K, Irie A, Kosuge T, Ohishi T, Nishihara M, Takahara A, et al. Mechanophores with a reversible radical system and freezing-induced mechanochemistry in polymer solutions and gels. Angew Chem Int Ed. 2015;54:6168–72.Article 
CAS 

Google Scholar 
Imato K, Kanehara T, Ohishi T, Nishihara M, Yajima H, Ito M, et al. Mechanochromic dynamic covalent elastomers: quantitative stress evaluation and autonomous recovery. ACS Macro Lett. 2015;4:1307–11.Article 
CAS 
PubMed 

Google Scholar 
Göstl R, Sijbesma RP. π-extended anthracenes as sensitive probes for mechanical stress. Chem Sci. 2016;7:370–5.Article 
PubMed 

Google Scholar 
Verstraeten F, Göstl R, Sijbesma RP. Stress-induced colouration and crosslinking of polymeric materials by mechanochemical formation of triphenylimidazolyl radicals. Chem Commun. 2016;52:8608–11.Article 
CAS 

Google Scholar 
Imato K, Kanehara T, Nojima S, Ohishi T, Higaki Y, Takahara A, et al. Repeatable mechanochemical activation of dynamic covalent bonds in thermoplastic elastomers. Chem Commun. 2016;52:10482–5.Article 
CAS 

Google Scholar 
Oka H, Imato K, Sato T, Ohishi T, Goseki R, Otsuka H. Enhancing mechanochemical activation in the bulk state by designing polymer architectures. ACS Macro Lett. 2016;5:1124–7.Article 
CAS 
PubMed 

Google Scholar 
Kosuge T, Imato K, Goseki R, Otsuka H. Polymer–inorganic composites with dynamic covalent mechanochromophore. Macromolecules. 2016;49:5903–11.Article 
CAS 

Google Scholar 
Imato K, Natterodt JC, Sapkota J, Goseki R, Weder C, Takahara A, et al. Dynamic covalent diarylbibenzofuranone-modified nanocellulose: mechanochromic behaviour and application in self-healing polymer composites. Polym Chem. 2017;8:2115–22.Article 
CAS 

Google Scholar 
Sagara Y, Karman M, Verde-Sesto E, Matsuo K, Kim Y, Tamaoki N, et al. Rotaxanes as mechanochromic fluorescent force transducers in polymers. J Am Chem Soc. 2018;140:1584–7.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sagara Y, Karman M, Seki A, Pannipara M, Tamaoki N, Weder C. Rotaxane-based mechanophores enable polymers with mechanically switchable white photoluminescence. ACS Central Sci. 2019;5:874–81.Article 
CAS 

Google Scholar 
Yildiz D, Baumann C, Mikosch A, Kuehne AJC, Herrmann A, Göstl R. Anti-stokes stress sensing: mechanochemical activation of triplet–triplet annihilation photon upconversion. Angew Chem Int Ed. 2019;58:12919–23.Article 
CAS 

Google Scholar 
Imato K, Yamanaka R, Nakajima H, Takeda N. Fluorescent supramolecular mechanophores based on charge-transfer interactions. Chem Commun. 2020;56:7937–40.Article 
CAS 

Google Scholar 
Izak-Nau E, Campagna D, Baumann C, Göstl R. Polymer mechanochemistry-enabled pericyclic reactions. Polym Chem. 2020;11:2274–99.Article 
CAS 

Google Scholar 
Stratigaki M, Göstl R. Methods for exerting and sensing force in polymer materials using mechanophores. ChemPlusChem. 2020;85:1095–103.Article 
CAS 
PubMed 

Google Scholar 
Sagara Y, Traeger H, Li J, Okado Y, Schrettl S, Tamaoki N, et al. Mechanically responsive luminescent polymers based on supramolecular cyclophane mechanophores. J Am Chem Soc. 2021;143:5519–25.Article 
CAS 
PubMed 

Google Scholar 
Muramatsu T, Okado Y, Traeger H, Schrettl S, Tamaoki N, Weder C, et al. Rotaxane-based dual function mechanophores exhibiting reversible and irreversible responses. J Am Chem Soc. 2021;143:9884–92.Article 
CAS 
PubMed 

Google Scholar 
Kato S, Furukawa S, Aoki D, Goseki R, Oikawa K, Tsuchiya K, et al. Crystallization-induced mechanofluorescence for visualization of polymer crystallization. Nat Commun. 2021;12:126.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Baumann C, Stratigaki M, Centeno SP, Göstl R. Multicolor mechanofluorophores for the quantitative detection of covalent bond scission in polymers. Angew Chem Int Ed. 2021;60:13287–93.Article 
CAS 

Google Scholar 
Traeger H, Sagara Y, Kiebala DJ, Schrettl S, Weder C. Folded perylene diimide loops as mechanoresponsive motifs. Angew Chem Int Ed. 2021;60:16191–9.Article 
CAS 

Google Scholar 
He S, Stratigaki M, Centeno SP, Dreuw A, Göstl R. Tailoring the properties of optical force probes for polymer mechanochemistry. Chem Eur J. 2021;27:15889–97.Article 
CAS 
PubMed 

Google Scholar 
Yamakado T, Saito S. Ratiometric flapping force probe that works in polymer gels. J Am Chem Soc. 2022;144:2804–15.Article 
CAS 
PubMed 

Google Scholar 
Kotani R, Yokoyama S, Nobusue S, Yamaguchi S, Osuka A, Yabu H, et al. Bridging pico-to-nanonewtons with a ratiometric force probe for monitoring nanoscale polymer physics before damage. Nat Commun. 2022;13:303.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Thazhathethil S, Muramatsu T, Tamaoki N, Weder C, Sagara Y. Excited state charge-transfer complexes enable fluorescence color changes in a supramolecular cyclophane mechanophore. Angew Chem Int Ed. 2022;61:e202209225.Article 
CAS 

Google Scholar 
Xuan M, Schumacher C, Bolm C, Göstl R, Herrmann A. The mechanochemical synthesis and activation of carbon-rich π-conjugated materials. Adv Sci. 2022;9:2105497.Article 
CAS 

Google Scholar 
Qiu W, Scofield JMP, Gurr PA, Qiao GG. Mechanochromophore-linked polymeric materials with visible color changes. Macromol Rapid Commun. 2022;43:2100866.Article 
CAS 

Google Scholar 
Suga K, Yamakado T, Saito S. Dual ratiometric fluorescence monitoring of mechanical polymer chain stretching and subsequent strain-induced crystallization. J Am Chem Soc. 2023;145:26799–809.Article 
CAS 
PubMed 

Google Scholar 
Willis-Fox N, Watchorn-Rokutan E, Rognin E, Daly R. Technology pull: scale-up of polymeric mechanochemical force sensors. Trends Chem. 2023;5:415–31.Article 
CAS 

Google Scholar 
Yamamoto T, Takahashi A, Otsuka H. Mechanochromic polymers based on radical-type dynamic covalent chemistry. Bull Chem Soc Jpn. 2023;97:uoad004.Pan Y, Zhang H, Xu P, Tian Y, Wang C, Xiang S, et al. A mechanochemical reaction cascade for controlling load-strengthening of a mechanochromic. Polym Angew Chem Int Ed. 2020;59:21980–5.Article 
CAS 

Google Scholar 
Seshimo K, Sakai H, Watabe T, Aoki D, Sugita H, Mikami K, et al. Segmented polyurethane elastomers with mechanochromic and self-strengthening functions. Angew Chem Int Ed. 2021;60:8406–9.Article 

Google Scholar 
Kato S, Aoki D, Otsuka H. Toughening of polymer networks by freezing-induced monomer insertion. Chem Lett. 2021;50:1223–5.Article 
CAS 

Google Scholar 
Giannantonio MD, Ayer MA, Verde-Sesto E, Lattuada M, Weder C, Fromm KM. Triggered metal ion release and oxidation: ferrocene as a mechanophore in polymers. Angew Chem Int Ed. 2018;57:11445–50.Article 

Google Scholar 
Hu H, Ma Z, Jia X. Reaction cascades in polymer mechanochemistry. Mater Chem Front. 2020;4:3115–29.Article 
CAS 

Google Scholar 
Versaw BA, Zeng T, Hu X, Robb MJ. Harnessing the power of force: development of mechanophores for molecular release. J Am Chem Soc. 2021;143:21461–73.Article 
CAS 
PubMed 

Google Scholar 
Sun Y, Neary WJ, Burke ZP, Qian H, Zhu L, Moore JS. Mechanically triggered carbon monoxide release with turn-on aggregation-induced emission. J Am Chem Soc. 2022;144:1125–9.Article 
CAS 
PubMed 

Google Scholar 
Shen H, Cao Y, Lv M, Sheng Q, Zhang Z. Polymer mechanochemistry for the release of small cargoes. Chem Commun. 2022;58:4813–24.Article 
CAS 

Google Scholar 
Küng R, Göstl R, Schmidt BM. Release of molecular cargo from polymer systems by mechanochemistry. Chem Eur J. 2022;28:e202103860.Article 
PubMed 

Google Scholar 
Liu W, Qian H. Emerging bio-relevant applications of polymer mechanochemistry. Chin J Chem. 2024;42:2066–70.Article 
CAS 

Google Scholar 
Göstl R, Hecht S. Controlling covalent connection and disconnection with light. Angew Chem Int Ed. 2014;53:8784–7.Article 

Google Scholar 
Kida J, Imato K, Goseki R, Morimoto M, Otsuka H. Photoregulation of retro-diels–alder reaction at the center of polymer chains. Chem Lett. 2017;46:992–4.Article 
CAS 

Google Scholar 
Kida J, Imato K, Goseki R, Aoki D, Morimoto M, Otsuka H. The photoregulation of a mechanochemical polymer scission. Nat Commun. 2018;9:3504.Article 
PubMed 
PubMed Central 

Google Scholar 
Qian H. The connection between molecular switches and mechanophores. Chem. 2021;7:831–3.Article 
CAS 

Google Scholar 
Imato K, Ooyama Y. Polymer mechanochemistry of component parts for artificial molecular machines. Macromol Chem Phys. 2023;224:2300316.Potisek SL, Davis DA, Sottos NR, White SR, Moore JS. Mechanophore-linked addition polymers. J Am Chem Soc. 2007;129:13808–9.Article 
CAS 
PubMed 

Google Scholar 
Davis DA, Hamilton A, Yang J, Cremar LD, Gough D V, Potisek SL, et al. Force-induced activation of covalent bonds in mechanoresponsive polymeric materials. Nature. 2009;459:68–72.Article 
CAS 
PubMed 

Google Scholar 
Li M, Zhang Q, Zhou Y-N, Zhu S. Let spiropyran help polymers feel force! Prog Polym Sci. 2018;79:26–39.Article 
CAS 

Google Scholar 
Robb MJ, Kim TA, Halmes AJ, White SR, Sottos NR, Moore JS. Regioisomer-specific mechanochromism of naphthopyran in polymeric materials. J Am Chem Soc. 2016;138:12328–31.Article 
CAS 
PubMed 

Google Scholar 
McFadden ME, Robb MJ. Force-dependent multicolor mechanochromism from a single mechanophore. J Am Chem Soc. 2019;141:11388–92.Article 
CAS 
PubMed 

Google Scholar 
Versaw BA, McFadden ME, Husic CC, Robb MJ. Designing naphthopyran mechanophores with tunable mechanochromic behavior. Chem Sci. 2020;11:4525–30.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
McFadden ME, Robb MJ. Generation of an elusive permanent merocyanine via a unique mechanochemical. React Pathw J Am Chem Soc. 2021;143:7925–9.Article 
CAS 

Google Scholar 
McFadden ME, Osler SK, Sun Y, Robb MJ. Mechanical force enables an anomalous dual ring-opening reaction of naphthodipyran. J Am Chem Soc. 2022;144:22391–6.Article 
CAS 
PubMed 

Google Scholar 
Wang Z, Ma Z, Wang Y, Xu Z, Luo Y, Wei Y, et al. A novel mechanochromic and photochromic polymer film: when rhodamine joins polyurethane. Adv Mater. 2015;27:6469–74.Article 
CAS 
PubMed 

Google Scholar 
Wang T, Zhang N, Dai J, Li Z, Bai W, Bai R. Novel reversible mechanochromic elastomer with high sensitivity: bond scission and bending-induced multicolor switching. ACS Appl Mater Interfaces. 2017;9:11874–81.Article 
CAS 
PubMed 

Google Scholar 
Wu M, Li Y, Yuan W, Bo GD, Cao Y, Chen Y. Cooperative and geometry-dependent mechanochromic reactivity through aromatic fusion of two. Rhodamines Polym J Am Chem Soc 2022;144:17120–8.Article 
CAS 

Google Scholar 
Qian H, Purwanto NS, Ivanoff DG, Halmes AJ, Sottos NR, Moore JS. Fast, reversible mechanochromism of regioisomeric oxazine mechanophores: Developing in situ responsive force probes for polymeric materials. Chem. 2021;7:1080–91.Article 
CAS 

Google Scholar 
Qi Q, Sekhon G, Chandradat R, Ofodum NM, Shen T, Scrimgeour J, et al. Force-induced near-infrared chromism of mechanophore-linked. Polym J Am Chem Soc. 2021;143:17337–43.Article 
CAS 

Google Scholar 
Surampudi SK, Patel HR, Nagarjuna G, Venkataraman D. Mechano-isomerization of azobenzene. Chem Commun. 2013;49:7519–21.Article 
CAS 

Google Scholar 
Lin Y, Hansen HR, Brittain WJ, Craig SL. Strain-dependent kinetics in the cis-to-trans isomerization of azobenzene in bulk elastomers. J Phys Chem B. 2019;123:8492–8.Article 
CAS 
PubMed 

Google Scholar 
Li Y, Xue B, Yang J, Jiang J, Liu J, Zhou Y, et al. Azobenzene as a photoswitchable mechanophore. Nat Chem. 2024;16:446–55.Article 
CAS 
PubMed 

Google Scholar 
Hu X, McFadden ME, Barber RW, Robb MJ. Mechanochemical regulation of a photochemical reaction. J Am Chem Soc. 2018;140:14073–7.Article 
CAS 
PubMed 

Google Scholar 
He S, Schog S, Chen Y, Ji Y, Panitz S, Richtering W, et al. Photoinduced mechanical cloaking of diarylethene-crosslinked microgels. Adv Mater. 2023;35:e2305845.Article 
PubMed 

Google Scholar 
Fu X, Zhu B, Hu X. Force-triggered atropisomerization of a parallel diarylethene to its antiparallel diastereomers. J Am Chem Soc. 2023;145:15668–73.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
He W, Yuan Y, Wu M, Li X, Shen Y, Qu Z, et al. Multicolor chromism from a single chromophore through synergistic coupling of mechanochromic and photochromic subunits. Angew Chem Int Ed. 2023;62:e202218785.Article 
CAS 

Google Scholar 
Shimasaki T, Kato S, Shinmyozu T. Synthesis, structural, spectral, and photoswitchable properties of cis- and trans-2,2,2’,2’-Tetramethyl-1,1’-indanylindanes. J Org Chem. 2007;72:6251–4.Article 
CAS 
PubMed 

Google Scholar 
Imato K, Sasaki A, Ishii A, Hino T, Kaneda N, Ohira K, et al. Sterically hindered stiff-stilbene photoswitch offers large motions, 90% two-way photoisomerization, and high thermal stability. J Org Chem. 2022;87:15762–70.Article 
CAS 
PubMed 

Google Scholar 
Villarón D, Bos JE, Kohl F, Mommer S, Jong Jde, Wezenberg SJ. Photoswitchable Bis(amidopyrroles): modulating anion transport activity independent of binding affinity. J Org Chem. 2023;88:11328–34.Article 
PubMed 
PubMed Central 

Google Scholar 
Xu F, Sheng J, Stindt CN, Crespi S, Danowski W, Hilbers MF, et al. All-visible-light-driven stiff-stilbene photoswitches. Chem Sci. 2024;15:6763–9.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Imato K, Ishii A, Kaneda N, Hidaka T, Sasaki A, Imae I, et al. Thermally stable photomechanical molecular hinge: sterically hindered stiff-stilbene photoswitch mechanically isomerizes. JACS Au. 2023;3:2458–66.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
May PA, Moore JS. Polymer mechanochemistry: techniques to generate molecular force via elongational flows. Chem Soc Rev. 2013;42:7497–506.Article 
CAS 
PubMed 

Google Scholar 
O’Neill RT, Boulatov R. Experimental quantitation of molecular conditions responsible for flow-induced polymer mechanochemistry. Nat Chem. 2023;15:1214–23.Article 
PubMed 

Google Scholar 
Krishnan BP, Xue L, Xiong X, Cui J. Photoinduced strain-assisted synthesis of a stiff-stilbene polymer by ring-opening metathesis polymerization. Chem Eur J. 2020;26:14828–32.Article 
CAS 
PubMed 

Google Scholar 
Hines L, Petersen K, Lum GZ, Sitti M. Soft actuators for small-scale robotics. Adv Mater. 2017;29:1603483.Article 

Google Scholar 
Ng CSX, Tan MWM, Xu C, Yang Z, Lee PS, Lum GZ. Locomotion of miniature soft robots. Adv Mater. 2021;33:2003558.Article 
CAS 

Google Scholar 
Rus D, Tolley MT. Design, fabrication and control of soft robots. Nature. 2015;521:467–75.Article 
CAS 
PubMed 

Google Scholar 
Whitesides GM. Soft robotics. Angew Chem Int Ed. 2018;57:4258–73.Article 
CAS 

Google Scholar 
Apsite I, Salehi S, Ionov L. Materials for smart soft actuator systems. Chem Rev. 2022;122:1349–415.Article 
CAS 
PubMed 

Google Scholar 
Yang L, Zhang Y, Cai W, Tan J, Hansen H, Wang H, et al. Electrochemically-driven actuators: from materials to mechanisms and from performance to applications. Chem Soc Rev. 2024;53:5956–6010.Article 
CAS 
PubMed 

Google Scholar 
Gupta B, Goudeau B, Kuhn A. Wireless electrochemical actuation of conducting polymers. Angew Chem Int Ed. 2017;56:14183–6.Article 
CAS 

Google Scholar 
Zhang L, Gupta B, Goudeau B, Mano N, Kuhn A. Wireless electromechanical readout of chemical information. J Am Chem Soc. 2018;140:15501–6.Article 
CAS 
PubMed 

Google Scholar 
Gupta B, Goudeau B, Garrigue P, Kuhn A. Bipolar conducting polymer crawlers based on triple symmetry breaking. Adv Funct Mater. 2018;28:1705825.Article 

Google Scholar 
Assavapanumat S, Gupta B, Salinas G, Goudeau B, Wattanakit C, Kuhn A. Chiral platinum–polypyrrole hybrid films as efficient enantioselective actuators. Chem Commun. 2019;55:10956–9.Article 
CAS 

Google Scholar 
Gupta B, Afonso MC, Zhang L, Ayela C, Garrigue P, Goudeau B, et al. Wireless coupling of conducting polymer actuators with light emission. ChemPhysChem. 2019;20:941–5.Article 
CAS 
PubMed 

Google Scholar 
Arnaboldi S, Gupta B, Benincori T, Bonetti G, Cirilli R, Kuhn A. Absolute chiral recognition with hybrid wireless electrochemical actuators. Anal Chem. 2020;92:10042–7.Article 
CAS 
PubMed 

Google Scholar 
Arnaboldi S, Gupta B, Benincori T, Bonetti G, Cirilli R, Kuhn A. Large scale chirality transduction with functional molecular materials. Chem Mater. 2020;32:10663–9.Article 
CAS 

Google Scholar 
Arnaboldi S, Salinas G, Bonetti G, Cirilli R, Benincori T, Kuhn A. Bipolar electrochemical measurement of enantiomeric excess with inherently chiral polymer actuators. ACS Meas Au. 2021;1:110–6.Article 
CAS 

Google Scholar 
Melvin AA, Gupta B, Tieriekhov K, Nogala W, Garrigue P, Reculusa S, et al. Wireless dual stimuli actuation of dye sensitized conducting polymer hybrids. Adv Funct Mater. 2021;31:2101171.Article 
CAS 

Google Scholar 
Gupta B, Zhang L, Melvin AA, Goudeau B, Bouffier L, Kuhn A. Designing tubular conducting polymer actuators for wireless electropumping. Chem Sci. 2021;12:2071–7.Article 
CAS 

Google Scholar 
Salinas G, Malacarne F, Bonetti G, Cirilli R, Benincori T, Arnaboldi S, et al. Wireless electromechanical enantio-responsive valves. Chirality. 2023;35:110–7.Article 
CAS 
PubMed 

Google Scholar 
Grecchi S, Salinas G, Cirilli R, Benincori T, Ghirardi S, Kuhn A, et al. Miniaturized enantioselective tubular devices for the electromechanical wireless separation of chiral analytes. Chem. 2024;10:660–74.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fosdick SE, Knust KN, Scida K, Crooks RM. Bipolar electrochemistry. Angew Chem Int Ed. 2013;52:10438–56.Article 
CAS 

Google Scholar 
Crooks RM. Principles of bipolar electrochemistry. ChemElectroChem. 2016;3:357–9.Article 
CAS 

Google Scholar 
Inagi S. Fabrication of gradient polymer surfaces using bipolar electrochemistry. Polym J. 2016;48:39–44.Article 
CAS 

Google Scholar 
Inagi S. Site-selective anisotropic modification of conductive objects by bipolar electropolymerization. Polym J. 2019;51:975–81.Article 
CAS 

Google Scholar 
Shida N, Zhou Y, Inagi S. Bipolar electrochemistry: a powerful tool for electrifying functional material synthesis. Acc Chem Res. 2019;52:2598–608.Article 
CAS 
PubMed 

Google Scholar 
Shida N, Inagi S. Bipolar electrochemistry in synergy with electrophoresis: electric field-driven electrosynthesis of anisotropic polymeric materials. Chem Commun. 2020;56:14327–36.Article 
CAS 

Google Scholar 
Salinas G, Arnaboldi S, Bouffier L, Kuhn A. Recent advances in bipolar electrochemistry with conducting polymers. ChemElectroChem. 2022;9:e202101234.Article 
CAS 

Google Scholar 
Imato K, Hino T, Kaneda N, Imae I, Shida N, Inagi S, et al. Wireless electrochemical gel actuators. Small. 2024;20:e2305067.Article 
PubMed 

Google Scholar 
Geraskina MR, Dutton AS, Juetten MJ, Wood SA, Winter AH. The viologen cation radical pimer: a case of dispersion-driven bonding. Angew Chem Int Ed. 2017;56:9435–9.Article 
CAS 

Google Scholar 
Sagara T, Tahara H. Redox of viologen for powering and coloring. Chem Rec. 2021;21:2375–88.Article 
CAS 
PubMed 

Google Scholar 
Cai K, Zhang L, Astumian RD, Stoddart JF. Radical-pairing-induced molecular assembly and motion. Nat Rev Chem. 2021;5:447–65.Article 
CAS 
PubMed 

Google Scholar 
Nakahata M, Takashima Y, Hashidzume A, Harada A. Redox-generated mechanical motion of a supramolecular polymeric actuator based on host–guest interactions. Angew Chem Int Ed. 2013;52:5731–5.Article 
CAS 

Google Scholar 
Takashima Y, Otani K, Kobayashi Y, Aramoto H, Nakahata M, Yamaguchi H, et al. Mechanical properties of supramolecular polymeric materials formed by cyclodextrins as host molecules and cationic alkyl guest molecules on the polymer side chain. Macromolecules. 2018;51:6318–26.Article 
CAS 

Google Scholar 
Aramoto H, Osaki M, Konishi S, Ueda C, Kobayashi Y, Takashima Y, et al. Redox-responsive supramolecular polymeric networks having double-threaded inclusion complexes. Chem Sci. 2020;11:4322–31.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang B, Tahara H, Sagara T. Driving quick and large amplitude contraction of viologen-incorporated Poly-l-Lysine-based hydrogel by reduction. ACS Appl Mater Interfaces. 2018;10:36415–24.Article 
CAS 
PubMed 

Google Scholar 
Porter WW, Vaid TP. Isolation and characterization of phenyl viologen as a radical cation and neutral molecule. J Org Chem. 2005;70:5028–35.Article 
CAS 
PubMed 

Google Scholar 
Clarke DE, Olesińska M, Mönch T, Schoenaers B, Stesmans A, Scherman OA. Aryl-viologen pentapeptide self-assembled conductive nanofibers. Chem Commun. 2019;55:7354–7.Article 
CAS 

Google Scholar 
Greene AF, Danielson MK, Delawder AO, Liles KP, Li X, Natraj A, et al. Redox-responsive artificial molecular muscles: reversible radical-based self-assembly for actuating hydrogels. Chem Mater. 2017;29:9498–508.Article 
CAS 

Google Scholar 
Wang B, Tahara H, Sagara T. Enhancement of deformation of redox-active hydrogel as an actuator by increasing pendant viologens and adding filler or counter-charged polymer. Sens Actuators B. 2021;331:129359.Article 
CAS 

Google Scholar 
Delawder AO, Natraj A, Colley ND, Saak T, Greene AF, Barnes JC. Synthesis, self-assembly, and photomechanical actuator performance of a sequence-defined polyviologen crosslinker. Supramol Chem. 2019;31:523–31.Article 
CAS 

Google Scholar 
Amir F, Liles KP, Delawder AO, Colley ND, Palmquist MS, Linder HR, et al. Reversible hydrogel photopatterning: spatial and temporal control over gel mechanical properties using visible light photoredox catalysis. ACS Appl Mater Interfaces. 2019;11:24627–38.Article 
CAS 
PubMed 

Google Scholar 
Amir F, Li X, Gruschka MC, Colley ND, Li L, Li R, et al. Dynamic, multimodal hydrogel actuators using porphyrin-based visible light photoredox catalysis in a thermoresponsive polymer network. Chem Sci. 2020;11:10910–20.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ooyama Y, Asada R, Inoue S, Komaguchi K, Imae I, Harima Y. Solvatochromism of novel donor–π–acceptor type pyridinium dyes in halogenated and non-halogenated solvents. N J Chem. 2009;33:2311–6.Article 
CAS 

Google Scholar 
Ooyama Y, Kushimoto K, Oda Y, Tokita D, Yamaguchi N, Inoue S, et al. Synthesis and specific solvatochromism of D–π–A type pyridinium dye. Tetrahedron. 2012;68:8577–80.Article 
CAS 

Google Scholar 
Ooyama Y, Oda Y, Mizumo T, Ohshita J. Specific solvatochromism of D–π-A type pyridinium dyes bearing various counter anions in halogenated solvents. Tetrahedron. 2013;69:1755–60.Article 
CAS 

Google Scholar 
Higashino T, Ooyama Y. Organohalogenochromism (OHC) of Dyes: D-π-A Pyrazinium Dye. Chem Lett. 2021;50:1530–3.Article 
CAS 

Google Scholar 
Kozuka K, Imato K, Ooyama Y. Organohalogenochromism (OHC) of D–π–A pyridinium dye polymer films and the colorimetric detection of volatile organic halogen compounds. Mater Adv. 2023;5:2218–29.Article 

Google Scholar 
Ooyama Y, Egawa H, Yoshida K. A new class of fluorescent dye for sensing water in organic solvents by photo-induced electron transfer – A (Phenylamino)naphtho[1,2-d]oxazol-2-yl-type fluorophore with both proton-binding and proton-donating sites. Eur J Org Chem 2008;2008:5239–43.Article 

Google Scholar 
Ooyama Y, Egawa H, Yoshida K. The design of a novel fluorescent PET sensor for proton and water: a phenylaminonaphtho[1,2-d]oxazol-2-yl-type fluorophore containing proton donor and acceptor groups. Dyes Pigm. 2009;82:58–64.Article 
CAS 

Google Scholar 
Ooyama Y, Sumomogi M, Nagano T, Kushimoto K, Komaguchi K, Imae I, et al. Detection of water in organic solvents by photo-induced electron transfer method. Org Biomol Chem. 2010;9:1314–6.Article 
PubMed 

Google Scholar 
Ooyama Y, Matsugasako A, Nagano T, Oka K, Kushimoto K, Komaguchi K, et al. Fluorescence PET (photo-induced electron transfer) sensor for water based on anthracene-amino acid. J Photochem Photobiol A. 2011;222:52–55.Article 
CAS 

Google Scholar 
Ooyama Y, Matsugasako A, Oka K, Nagano T, Sumomogi M, Komaguchi K, et al. Fluorescence PET (photo-induced electron transfer) sensors for water based on anthracene–boronic acid ester. Chem Commun. 2011;47:4448–50.Article 
CAS 

Google Scholar 
Ooyama Y, Matsugasako A, Hagiwara Y, Ohshita J, Harima Y. Highly sensitive fluorescence PET (photo-induced electron transfer) sensor for water based on anthracene–bisboronic acid ester. RSC Adv. 2012;2:7666–8.Article 
CAS 

Google Scholar 
Ooyama Y, Uenaka K, Matsugasako A, Harima Y, Ohshita J. Molecular design and synthesis of fluorescence PET (photo-induced electron transfer) sensors for detection of water in organic solvents. RSC Adv. 2013;3:23255–63.Article 
CAS 

Google Scholar 
Ooyama Y, Furue K, Uenaka K, Ohshita J. Development of highly-sensitive fluorescence PET (photo-induced electron transfer) sensor for water: anthracene–boronic acid ester. RSC Adv. 2014;4:25330–3.Article 
CAS 

Google Scholar 
Ooyama Y, Aoyama S, Furue K, Uenaka K, Ohshita J. Fluorescence sensor for water based on PET (photo-induced electron transfer): Anthracene-bis(aminomethyl)phenylboronic acid ester. Dyes Pigm. 2015;123:248–53.Article 
CAS 

Google Scholar 
Ooyama Y, Hato M, Enoki T, Aoyama S, Furue K, Tsunoji N, et al. A BODIPY sensor for water based on a photo-induced electron transfer method with fluorescence enhancement and attenuation systems. N J Chem. 2016;40:7278–81.Article 
CAS 

Google Scholar 
Jung HS, Verwilst P, Kim WY, Kim JS. Fluorescent and colorimetric sensors for the detection of humidity or water content. Chem Soc Rev. 2016;45:1242–56.Article 
CAS 
PubMed 

Google Scholar 
Ooyama Y, Nomura R, Enoki T, Sagisaka R, Tsunoji N, Ohshita J. Development of a dual-fluorescence emission sensor based on photo-induced electron transfer and aggregation-induced emission enhancement for detection of water. ChemistrySelect. 2017;2:7765–70.Article 
CAS 

Google Scholar 
Ooyama Y, Sagisaka R, Enoki T, Tsunoji N, Ohshita J. Tetraphenylethene– and diphenyldibenzofulvene–anthracene-based fluorescence sensors possessing photo-induced electron transfer and aggregation-induced emission enhancement characteristics for detection of water. N J Chem. 2018;42:13339–50.Article 
CAS 

Google Scholar 
Tsumura S, Enoki T, Ooyama Y. A colorimetric and fluorescent sensor for water in acetonitrile based on intramolecular charge transfer: D–(π–A)2-type pyridine–boron trifluoride complex. Chem Commun. 2018;54:10144–7.Article 
CAS 

Google Scholar 
Enoki T, Ooyama Y. Colorimetric and ratiometric fluorescence sensing of water based on 9-methyl pyrido[3,4- b]indole-boron trifluoride complex. Dalton Trans. 2019;48:2086–92..Jinbo D, Imato K, Ooyama Y. Fluorescent sensor for water based on photo-induced electron transfer and Förster resonance energy transfer: anthracene-(aminomethyl)phenylboronic acid ester-BODIPY structure. RSC Adv. 2019;9:15335–40.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Imato K, Enoki T, Ooyama Y. Development of an intramolecular charge transfer-type colorimetric and fluorescence sensor for water by fusion with a juloidine structure and complexation with boron trifluoride. RSC Adv. 2019;9:31466–73.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tsumura S, Ohira K, Imato K, Ooyama Y. Development of optical sensor for water in acetonitrile based on propeller-structured BODIPY-type pyridine–boron trifluoride complex. RSC Adv. 2020;10:33836–43.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jinbo D, Ohira K, Imato K, Ooyama Y. Development of fluorescent sensors based on a combination of PET (photo-induced electron transfer) and FRET (Förster resonance energy transfer) for detection of water. Mater Adv. 2020;1:354–62.Article 
CAS 

Google Scholar 
Mise Y, Imato K, Ogi T, Tsunoji N, Ooyama Y. Fluorescence sensors for detection of water based on tetraphenylethene–anthracene possessing both solvatofluorochromic properties and aggregation-induced emission (AIE) characteristics. N J Chem. 2021;45:4164–73.Article 
CAS 

Google Scholar 
Mishra S, Singh AK. Optical sensors for water and humidity and their further applications. Coord Chem Rev. 2021;445:214063.Article 
CAS 

Google Scholar 
Nishimoto E, Mise Y, Fumoto T, Miho S, Tsunoji N, Imato K, et al. Tetraphenylethene–anthracene-based fluorescence emission sensor for the detection of water with photo-induced electron transfer and aggregation-induced emission characteristics. N J Chem. 2022;46:12474–81.Article 
CAS 

Google Scholar 
Fumoto T, Imato K, Ooyama Y. Elucidation of a detection mechanism of a fluorescent sensor based on photo-induced electron transfer for water. N J Chem. 2022;46:21037–46.Article 
CAS 

Google Scholar 
Miho S, Imato K, Ooyama Y. Fluorescent polymer films based on photo-induced electron transfer for visualizing water. RSC Adv. 2022;12:25687–96.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Miho S, Fumoto T, Mise Y, Imato K, Akiyama S, Ishida M, et al. Development of highly sensitive fluorescent sensor and fluorescent sensor-doped polymer films for trace amounts of water based on photo-induced electron transfer. Mater Adv. 2021;2:7662–70.Article 
CAS 

Google Scholar 
Fumoto T, Miho S, Mise Y, Imato K, Ooyama Y. Polymer films doped with fluorescent sensor for moisture and water droplet based on photo-induced electron transfer. RSC Adv. 2021;11:17046–50.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tao K, Imato K, Ooyama Y. Anthracene-(aminomethyl)phenylboronic acid ester-immobilized glass substrates as fluorescent sensing materials based on photo-induced electron transfer for detection and visualization of water. Sens Diagn. 2024;3:631–9.Article 
CAS 

Google Scholar 
Li Q, Fuks G, Moulin E, Maaloum M, Rawiso M, Kulic I, et al. Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors. Nat Nanotechnol. 2015;10:161–5.Article 
PubMed 

Google Scholar 
Foy JT, Li Q, Goujon A, Colard-Itté J-R, Fuks G, Moulin E, et al. Dual-light control of nanomachines that integrate motor and modulator subunits. Nat Nanotechnol. 2017;12:540–5.Article 
CAS 
PubMed 

Google Scholar 
Chen J, Leung FK-C, Stuart MCA, Kajitani T, Fukushima T, Giessen Evander, et al. Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors. Nat Chem. 2018;10:132–8.Article 
CAS 
PubMed 

Google Scholar 
Walden SL, Nguyen PHD, Li H-K, Liu X, Le MTN, Jun LX, et al. Visible light-induced switching of soft matter materials properties based on thioindigo photoswitches. Nat Commun. 2023;14:8298.Article 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles