Additive-assisted macroscopic self-assembly and control of the shape of assemblies based on host–guest interaction

Berg, J. M., Tymoczko, J. L. & Stryer, L. Biochemistry 6th edn. (W. H Freeman, 2007).
Google Scholar 
Voet, D. & Voet, J. G. Biochemistry 4th edn. (Wiley, 2010).
Google Scholar 
Alberts, B. et al. Molecular Biology of the Cell 6th edn. (Garland Publishing Inc., 2014).
Google Scholar 
Brunsveld, L., Folmer, B. J. B., Meijer, E. W. & Sijbesma, R. P. Supramolecular polymers. Chem. Rev. 101, 4071–4098. https://doi.org/10.1021/cr990125q (2001).Article 
CAS 
PubMed 

Google Scholar 
de Greef, T. F. A. & Meijer, E. W. Materials science: Supramolecular polymers. Nature 453, 171–173. https://doi.org/10.1038/453171a (2008).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Harada, A., Takashima, Y. & Yamaguchi, H. Cyclodextrin-based supramolecular polymers. Chem. Soc. Rev. 38, 875–882. https://doi.org/10.1039/B705458K (2009).Article 
CAS 
PubMed 

Google Scholar 
Burattini, S. et al. A healable supramolecular polymer blend based on aromatic π–π stacking and hydrogen-bonding interactions. J. Am. Chem. Soc. 132, 12051–12058. https://doi.org/10.1021/ja104446r (2010).Article 
CAS 
PubMed 

Google Scholar 
Aida, T., Meijer, E. W. & Stupp, S. I. Functional supramolecular polymers. Science 335, 813–817. https://doi.org/10.1126/science.1205962 (2012).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zheng, B., Wang, F., Dong, S. & Huang, F. Supramolecular polymers constructed by crown ether-based molecular recognition. Chem. Soc. Rev. 41, 1621–1636. https://doi.org/10.1039/C1CS15220C (2012).Article 
CAS 
PubMed 

Google Scholar 
Guo, D.-S. & Liu, Y. Calixarene-based supramolecular polymerization in solution. Chem. Soc. Rev. 41, 5907–5921. https://doi.org/10.1039/C2CS35075K (2012).Article 
CAS 
PubMed 

Google Scholar 
Herbst, F., Döhler, D., Michael, P. & Binder, W. H. Self-healing polymers via supramolecular forces. Macromol. Rapid Commun. 34, 203–220. https://doi.org/10.1002/marc.201200675 (2013).Article 
CAS 
PubMed 

Google Scholar 
Ma, X. & Tian, H. Stimuli-responsive supramolecular polymers in aqueous solution. Acc. Chem. Res. https://doi.org/10.1021/ar500033n (2014).Article 
PubMed 

Google Scholar 
Dong, S., Zheng, B., Wang, F. & Huang, F. Supramolecular polymers constructed from macrocycle-based host–guest molecular recognition motifs. Acc. Chem. Res. https://doi.org/10.1021/ar5000456 (2014).Article 
PubMed 

Google Scholar 
Yang, L., Tan, X., Wang, Z. & Zhang, X. Supramolecular polymers: Historical development, preparation, characterization, and functions. Chem. Rev. 115, 7196–7239. https://doi.org/10.1021/cr500633b (2015).Article 
CAS 
PubMed 

Google Scholar 
Wei, P., Yan, X. & Huang, F. Supramolecular polymers constructed by orthogonal self-assembly based on host–guest and metal–ligand interactions. Chem. Soc. Rev. 44, 815–832. https://doi.org/10.1039/C4CS00327F (2015).Article 
CAS 
PubMed 

Google Scholar 
Krieg, E., Bastings, M. M. C., Besenius, P. & Rybtchinski, B. Supramolecular polymers in aqueous media. Chem. Rev. 116, 2414–2477. https://doi.org/10.1021/acs.chemrev.5b00369 (2016).Article 
CAS 
PubMed 

Google Scholar 
Folmer, B. J. B., Sijbesma, R. P., Versteegen, R. M., van der Rijt, J. A. J. & Meijer, E. W. Supramolecular polymer materials: Chain extension of telechelic polymers using a reactive hydrogen-bonding synthon. Adv. Mater. 12, 874–878. https://doi.org/10.1002/1521-4095(200006)12:12%3c874::AID-ADMA874%3e3.0.CO;2-C (2000).Article 
CAS 

Google Scholar 
Beck, J. B. & Rowan, S. J. Multistimuli, multiresponsive metallo-supramolecular polymers. J. Am. Chem. Soc. 125, 13922–13923. https://doi.org/10.1021/ja038521k (2003).Article 
CAS 
PubMed 

Google Scholar 
Burnworth, M. et al. Optically healable supramolecular polymers. Nature 472, 334–337. https://doi.org/10.1038/nature09963 (2011).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Yan, X. et al. A multiresponsive, shape-persistent, and elastic supramolecular polymer network gel constructed by orthogonal self-assembly. Adv. Mater. 24, 362–369. https://doi.org/10.1002/adma.201103220 (2012).Article 
CAS 
PubMed 

Google Scholar 
Ogi, S., Sugiyasu, K., Manna, S., Samitsu, S. & Takeuchi, M. Living supramolecular polymerization realized through a biomimetic approach. Nat. Chem. 6, 188–195. https://doi.org/10.1038/nchem.1849 (2014).Article 
CAS 
PubMed 

Google Scholar 
Li, Z.-Y. et al. Cross-linked supramolecular polymer gels constructed from discrete multi-pillar[5]arene metallacycles and their multiple stimuli-responsive behavior. J. Am. Chem. Soc. 136, 8577–8589. https://doi.org/10.1021/ja413047r (2014).Article 
CAS 
PubMed 

Google Scholar 
Dai, X. et al. A Mechanically strong, highly stable, thermoplastic, and self-healable supramolecular polymer hydrogel. Adv. Mater. 27, 3566–3571. https://doi.org/10.1002/adma.201500534 (2015).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Kang, J. et al. A rational strategy for the realization of chain-growth supramolecular polymerization. Science 347, 646–651. https://doi.org/10.1126/science.aaa4249 (2015).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Wu, Q. et al. A robust, highly stretchable supramolecular polymer conductive hydrogel with self-healability and thermo-processability. Sci. Rep. 7, 41566. https://doi.org/10.1038/srep41566 (2017).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Harada, A., Kobayashi, R., Takashima, Y., Hashidzume, A. & Yamaguchi, H. Macroscopic self-assembly through molecular recognition. Nat. Chem. 3, 34–37. https://doi.org/10.1038/nchem.893 (2011).Article 
CAS 
PubMed 

Google Scholar 
Zheng, Y., Hashidzume, A., Takashima, Y., Yamaguchi, H. & Harada, A. Macroscopic observation of molecular recognition: Discrimination of the substituted position on naphthyl group by polyacrylamide gel modified with β-cyclodextrin. Langmuir 27, 13790–13795. https://doi.org/10.1021/la2034142 (2011).Article 
CAS 
PubMed 

Google Scholar 
Hashidzume, A., Zheng, Y., Takashima, Y., Yamaguchi, H. & Harada, A. Macroscopic self-assembly based on molecular recognition: Effect of linkage between aromatics and the polyacrylamide gel scaffold, amide versus ester. Macromolecules 46, 1939–1947. https://doi.org/10.1021/ma302344x (2013).Article 
ADS 
CAS 

Google Scholar 
Qi, H. et al. DNA-directed self-assembly of shape-controlled hydrogels. Nat. Commun. 4, 2275. https://doi.org/10.1038/ncomms3275 (2013).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Tu, T., Fang, W. & Sun, Z. Visual-size molecular recognition based on gels. Adv. Mater. 25, 5304–5313. https://doi.org/10.1002/adma.201301914 (2013).Article 
CAS 
PubMed 

Google Scholar 
Cheng, M. et al. Macroscopic supramolecular assembly of rigid building blocks through a flexible spacing coating. Adv. Mater. 26, 3009–3013. https://doi.org/10.1002/adma.201305177 (2014).Article 
CAS 
PubMed 

Google Scholar 
Cheng, M., Liu, Q., Xian, Y. & Shi, F. Programmable macroscopic supramolecular assembly through combined molecular recognition and magnetic field-assisted localization. ACS Appl. Mater. Interfaces 6, 7572–7578. https://doi.org/10.1021/am500910y (2014).Article 
CAS 
PubMed 

Google Scholar 
Xiao, M., Xian, Y. & Shi, F. Precise macroscopic supramolecular assembly by combining spontaneous locomotion driven by the marangoni effect and molecular recognition. Angew. Chem. Int. Ed. 54, 8952–8956. https://doi.org/10.1002/anie.201502349 (2015).Article 
CAS 

Google Scholar 
Akram, R., Arshad, A., Wu, Y., Wu, Z. & Wu, D. Efficient modification with flexible spacing coating for in situ reversible assembly of semirigid macroscopic objects through hierarchical metal coordination. Polym. Adv. Technol. 29, 226–233. https://doi.org/10.1002/pat.4107 (2018).Article 
CAS 

Google Scholar 
Cheng, M. et al. Parallel and precise macroscopic supramolecular assembly through prolonged marangoni motion. Angew. Chem. Int. Ed. 57, 14106–14110. https://doi.org/10.1002/anie.201808294 (2018).Article 
ADS 
CAS 

Google Scholar 
Zheng, Y. et al. Visible chiral discrimination via macroscopic selective assembly. Commun. Chem. 1, 4. https://doi.org/10.1038/s42004-017-0003-x (2018).Article 
ADS 
CAS 

Google Scholar 
Ju, G., Cheng, M., Guo, F., Zhang, Q. & Shi, F. Elasticity-dependent fast underwater adhesion demonstrated by macroscopic supramolecular assembly. Angew. Chem. Int. Ed. 57, 8963–8967. https://doi.org/10.1002/anie.201803632 (2018).Article 
CAS 

Google Scholar 
Sun, Y. et al. Elastic-modulus-dependent macroscopic supramolecular assembly of poly(dimethylsiloxane) for understanding fast interfacial adhesion. Langmuir 37, 4276–4283. https://doi.org/10.1021/acs.langmuir.1c00266 (2021).Article 
CAS 
PubMed 

Google Scholar 
Sontakke, V. A. & Yokobayashi, Y. Programmable macroscopic self-assembly of DNA-decorated hydrogels. J. Am. Chem. Soc. 144, 2149–2155. https://doi.org/10.1021/jacs.1c10308 (2022).Article 
CAS 
PubMed 

Google Scholar 
Zhang, J., Wu, J., Sun, J. & Zhou, Q. Temperature-sensitive bending of bigel strip bonded by macroscopic molecular recognition. Soft Matter 8, 5750–5752. https://doi.org/10.1039/C2SM25511A (2012).Article 
ADS 
CAS 

Google Scholar 
Yamaguchi, H. et al. Photoswitchable gel assembly based on molecular recognition. Nat. Commun. 3, 603. https://doi.org/10.1038/ncomms1617 (2012).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Zheng, Y., Hashidzume, A., Takashima, Y., Yamaguchi, H. & Harada, A. Switching of macroscopic molecular recognition selectivity using a mixed solvent system. Nat. Commun. 3, 831. https://doi.org/10.1038/ncomms1841 (2012).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Zheng, Y., Hashidzume, A., Takashima, Y., Yamaguchi, H. & Harada, A. Temperature-sensitive macroscopic assembly based on molecular recognition. ACS Macro Lett. 1, 1083–1085. https://doi.org/10.1021/mz300338d (2012).Article 
CAS 
PubMed 

Google Scholar 
Zheng, Y., Hashidzume, A. & Harada, A. pH-responsive self-assembly by molecular recognition on a macroscopic scale. Macromol. Rapid Commun. 34, 1062–1066. https://doi.org/10.1002/marc.201300324 (2013).Article 
CAS 
PubMed 

Google Scholar 
Nakahata, M., Takashima, Y. & Harada, A. Redox-responsive macroscopic gel assembly based on discrete dual interactions. Angew. Chem. Int. Ed. 53, 3617–3621. https://doi.org/10.1002/anie.201310295 (2014).Article 
CAS 

Google Scholar 
Simeth, N. A. et al. Photoswitchable architecture transformation of a DNA-hybrid assembly at the microscopic and macroscopic scale. Chem. Sci. 13, 3263–3272. https://doi.org/10.1039/D1SC06490H (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tan, M. et al. Self-sorting in macroscopic supramolecular self-assembly via additive effects of capillary and magnetic forces. Nat. Commun. 13, 5201. https://doi.org/10.1038/s41467-022-32892-y (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Itami, T., Hashidzume, A., Kamon, Y., Yamaguchi, H. & Harada, A. The macroscopic shape of assemblies formed from microparticles based on host–guest interaction dependent on the guest content. Sci. Rep. 11, 6320. https://doi.org/10.1038/s41598-021-85816-z (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Meth. 9, 671–675. https://doi.org/10.1038/nmeth.2089 (2012).Hashidzume, A., Itami, T., Kamon, Y. & Harada, A. A simplified model for multivalent interaction competing with a low molecular weight competitor. Chem. Lett. 49, 1306–1308. https://doi.org/10.1246/cl.200501 (2020).Article 
CAS 

Google Scholar 
Galant, C., Amiel, C., Wintgens, V., Sébille, B. & Auvray, L. Ternary complexes with poly(β-cyclodextrin), cationic surfactant, and polyanion in dilute aqueous solution: A viscometric and small-angle neutron scattering study. Langmuir 18, 9687–9695. https://doi.org/10.1021/la020566w (2002).Article 
CAS 

Google Scholar 
Galant, C., Amiel, C. & Auvray, L. Tailorable polyelectrolyte complexes using cyclodextrin polymers. J. Phys. Chem. B 108, 19218–19227. https://doi.org/10.1021/jp047494x (2004).Article 
CAS 

Google Scholar 
Odashima, K., Hashimoto, H. & Umezawa, Y. Potentiometric discrimination of organic amines by liquid membrane electrodes based on a long alkyl chain derivative of β-cyclodextrin. Microchim. Acta 113, 223–238. https://doi.org/10.1007/BF01243613 (1994).Article 
CAS 

Google Scholar 
Nishikawa, S., Yamaguchi, K. & Fukahori, T. Ultrasonic relaxation due to complexation reaction between β-cyclodextrin and alkylammonium ions. J. Phys. Chem. A 107, 6415–6418. https://doi.org/10.1021/jp022589p (2003).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles