Exploring the structural landscape of DNA maintenance proteins

Aravind, L., Walker, D. R. & Koonin, E. V. Conserved domains in DNA repair proteins and evolution of repair systems. Nucleic Acids Res 27, 1223–1242 (1999).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Arcas, A., Fernandez-Capetillo, O., Cases, I. & Rojas, A. M. Emergence and evolutionary analysis of the human DDR network: implications in comparative genomics and downstream analyses. Mol. Biol. Evol. 31, 940–961 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Finn, R. D. et al. HMMER web server: 2015 update. Nucleic Acids Res 43, W30–W38 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zimmermann, L. et al. A completely reimplemented mpi bioinformatics toolkit with a new hhpred server at its core. J. Mol. Biol. 430, 2237–2243 (2018).Article 
CAS 
PubMed 

Google Scholar 
Koonin, E. V., Altschul, S. F. & Bork, P. BRCA1 protein products… Functional motifs. Nat. Genet 13, 266–268 (1996).Article 
CAS 
PubMed 

Google Scholar 
Wu, Q., Jubb, H. & Blundell, T. L. Phosphopeptide interactions with BRCA1 BRCT domains: More than just a motif. Prog. Biophys. Mol. Biol. 117, 143–148 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Callebaut, I. & Mornon, J. P. From BRCA1 to RAP1: a widespread BRCT module closely associated with DNA repair. FEBS Lett. 400, 25–30 (1997).Article 
CAS 
PubMed 

Google Scholar 
Becker, E., Meyer, V., Madaoui, H. & Guerois, R. Detection of a tandem BRCT in Nbs1 and Xrs2 with functional implications in the DNA damage response. Bioinformatics 22, 1289–1292 (2006).Article 
CAS 
PubMed 

Google Scholar 
Deshpande, I. et al. The Sir4 H-BRCT domain interacts with phospho-proteins to sequester and repress yeast heterochromatin. EMBO J. 38, e101744 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Woods, N. T. et al. Charting the landscape of tandem BRCT domain-mediated protein interactions. Sci. Signal 5, rs6 (2012).Article 
PubMed 
PubMed Central 

Google Scholar 
Baker, J. A., Simkovic, F., Taylor, H. M. & Rigden, D. J. Potential DNA binding and nuclease functions of ComEC domains characterized in silico. Proteins 84, 1431–1442 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lee, J., Mandell, E. K., Tucey, T. M., Morris, D. K. & Lundblad, V. The Est3 protein associates with yeast telomerase through an OB-fold domain. Nat. Struct. Mol. Biol. 15, 990–997 (2008).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bhattacharjee, A., Stewart, J., Chaiken, M. & Price, C. M. STN1 OB fold mutation alters DNA binding and affects selective aspects of CST function. PLoS Genet 12, e1006342 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Zhou, Q., Kojic, M. & Holloman, W. K. DNA-binding Domain within the Brh2 N Terminus Is the Primary Interaction Site for Association with DNA. J. Biol. Chem. 284, 8265–8273 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hustedt, N. et al. Control of homologous recombination by the HROB-MCM8-MCM9 pathway. Genes Dev. 33, 1397–1415 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ribeiro, J. et al. The meiosis-specific MEIOB-SPATA22 complex cooperates with RPA to form a compacted mixed MEIOB/SPATA22/RPA/ssDNA complex. DNA Repair (Amst.) 102, 103097 (2021).Article 
CAS 
PubMed 

Google Scholar 
Gao, S. et al. An OB-fold complex controls the repair pathways for DNA double-strand breaks. Nat. Commun. 9, 3925 (2018).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Moser, M. J., Holley, W. R., Chatterjee, A. & Mian, I. S. The proofreading domain of Escherichia coli DNA polymerase I and other DNA and/or RNA exonuclease domains. Nucleic Acids Res. 25, 5110–5118 (1997).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dunin-Horkawicz, S., Feder, M. & Bujnicki, J. M. Phylogenomic analysis of the GIY-YIG nuclease superfamily. BMC Genomics 7, 98 (2006).Article 
PubMed 
PubMed Central 

Google Scholar 
Dargahi, D., Baillie, D. & Pio, F. Bioinformatics analysis identify novel OB fold protein coding genes in C. elegans. PLoS One 8, e62204 (2013).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Remmert, M., Biegert, A., Hauser, A. & Soding, J. HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat. Methods 9, 173–175 (2011).Article 
PubMed 

Google Scholar 
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jiang, H. et al. Predicting protein-ligand docking structure with graph neural network. J. Chem. Inf. Model 62, 2923–2932 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sharma, A., Vans, E., Shigemizu, D., Boroevich, K. A. & Tsunoda, T. DeepInsight: A methodology to transform a non-image data to an image for convolution neural network architecture. Sci. Rep. 9, 11399 (2019).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630 493–500 (2024).Schou, K. B., Andersen, J. S. & Pedersen, L. B. A divergent calponin homology (NN-CH) domain defines a novel family: implications for evolution of ciliary IFT complex B proteins. Bioinformatics 30, 899–902 (2014).Article 
CAS 
PubMed 

Google Scholar 
Lupas, A., Van Dyke, M. & Stock, J. Predicting coiled coils from protein sequences. Science 252, 1162–1164 (1991).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Welsh, S. A. & Gardini, A. Genomic regulation of transcription and RNA processing by the multitasking Integrator complex. Nat. Rev. Mol. Cell Biol. 10.1038/s41580-022-00534-2 (2022).Sabath, K. et al. INTS10-INTS13-INTS14 form a functional module of Integrator that binds nucleic acids and the cleavage module. Nat. Commun. 11, 3422 (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Arango, N. A. et al. Meiosis I arrest abnormalities lead to severe oligozoospermia in meiosis 1 arresting protein (M1ap)-deficient mice. Biol. Reprod. 88, 76 (2013).Article 
PubMed 

Google Scholar 
Yang, F., Eckardt, S., Leu, N. A., McLaughlin, K. J. & Wang, P. J. Mouse TEX15 is essential for DNA double-strand break repair and chromosomal synapsis during male meiosis. J. Cell Biol. 180, 673–679 (2008).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tchasovnikarova, I. A. et al. GENE SILENCING. Epigenetic silencing by the HUSH complex mediates position-effect variegation in human cells. Science 348, 1481–1485 (2015).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Douse, C. H. et al. TASOR is a pseudo-PARP that directs HUSH complex assembly and epigenetic transposon control. Nat. Commun. 11, 4940 (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dodson, C. A. & Arbely, E. Protein folding of the SAP domain, a naturally occurring two-helix bundle. FEBS Lett. 589, 1740–1747 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
de Murcia, G. & Menissier de Murcia, J. Poly(ADP-ribose) polymerase: a molecular nick-sensor. Trends Biochem Sci. 19, 172–176 (1994).Article 
PubMed 

Google Scholar 
Tao, Z., Gao, P., Hoffman, D. W. & Liu, H. W. Domain C of human poly(ADP-ribose) polymerase-1 is important for enzyme activity and contains a novel zinc-ribbon motif. Biochemistry 47, 5804–5813 (2008).Article 
CAS 
PubMed 

Google Scholar 
Langelier, M. F., Servent, K. M., Rogers, E. E. & Pascal, J. M. A third zinc-binding domain of human poly(ADP-ribose) polymerase-1 coordinates DNA-dependent enzyme activation. J. Biol. Chem. 283, 4105–4114 (2008).Article 
CAS 
PubMed 

Google Scholar 
Bianco, P. R. OB-fold Families of Genome Guardians: A Universal Theme Constructed From the Small beta-barrel Building Block. Front Mol. Biosci. 9, 784451 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gupta, R. et al. DNA repair network analysis reveals shieldin as a key regulator of nhej and parp inhibitor sensitivity. Cell 173, 972–988.e23 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dev, H. et al. Shieldin complex promotes DNA end-joining and counters homologous recombination in BRCA1-null cells. Nat. Cell Biol. 20, 954–965 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Findlay, S. et al. SHLD2/FAM35A co-operates with REV7 to coordinate DNA double-strand break repair pathway choice. EMBO J. 37 PMC6138439(2018).Ghezraoui, H. et al. 53BP1 cooperation with the REV7-shieldin complex underpins DNA structure-specific NHEJ. Nature 560, 122–127 (2018).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mirman, Z. et al. 53BP1-RIF1-shieldin counteracts DSB resection through CST- and Polalpha-dependent fill-in. Nature 560, 112–116 (2018).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Noordermeer, S. M. et al. The shieldin complex mediates 53BP1-dependent DNA repair. Nature 560, 117–121 (2018).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tomida, J. et al. FAM35A associates with REV7 and modulates DNA damage responses of normal and BRCA1-defective cells. EMBO J. 37 e99543 (2018).Zlotorynski, E. Shieldin the ends for 53BP1. Nat. Rev. Mol. Cell Biol. 19, 346–347 (2018).Article 
CAS 
PubMed 

Google Scholar 
Wan, L. et al. Scaffolding protein SPIDR/KIAA0146 connects the Bloom syndrome helicase with homologous recombination repair. Proc. Natl Acad. Sci. USA 110, 10646–10651 (2013).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
van Kempen, M. et al. Fast and accurate protein structure search with Foldseek. Nat. Biotechnol. 42, 243–246 (2024).Article 
PubMed 

Google Scholar 
Brill, S. J. & Bastin-Shanower, S. Identification and characterization of the fourth single-stranded-DNA binding domain of replication protein A. Mol. Cell Biol. 18, 7225–7234 (1998).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Heddar, A., Guichoux, N., Auger, N. & Misrahi, M. A SPIDR homozygous nonsense pathogenic variant in isolated primary ovarian insufficiency with chromosomal instability. Clin. Genet 101, 242–246 (2022).Article 
CAS 
PubMed 

Google Scholar 
Smirin-Yosef, P. et al. A biallelic mutation in the homologous recombination repair gene spidr is associated with human gonadal dysgenesis. J. Clin. Endocrinol. Metab. 102, 681–688 (2017).Article 
PubMed 

Google Scholar 
Subramanian, L., Toda, N. R., Rappsilber, J. & Allshire, R. C. Eic1 links Mis18 with the CCAN/Mis6/Ctf19 complex to promote CENP-A assembly. Open Biol. 4, 140043 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Consortium, G. T. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020).Article 

Google Scholar 
Subramanian, L. et al. Centromere localization and function of Mis18 requires Yippee-like domain-mediated oligomerization. EMBO Rep. 17, 496–507 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. bioRxiv, 2021.10.04.463034 (2021).Wold, M. S. & Kelly, T. Purification and characterization of replication protein A, a cellular protein required for in vitro replication of simian virus 40 DNA. Proc. Natl Acad. Sci. USA 85, 2523–2527 (1988).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ceccaldi, R., Sarangi, P. & D’Andrea, A. D. The Fanconi anaemia pathway: new players and new functions. Nat. Rev. Mol. Cell Biol. 17, 337–349 (2016).Article 
CAS 
PubMed 

Google Scholar 
Zhang, Q., Ji, S. Y., Busayavalasa, K. & Yu, C. SPO16 binds SHOC1 to promote homologous recombination and crossing-over in meiotic prophase I. Sci. Adv. 5, eaau9780 (2019).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Fairman, M. P. & Stillman, B. Cellular factors required for multiple stages of SV40 DNA replication in vitro. EMBO J. 7, 1211–1218 (1988).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lawo, S. et al. HAUS, the 8-subunit human Augmin complex, regulates centrosome and spindle integrity. Curr. Biol. 19, 816–826 (2009).Article 
CAS 
PubMed 

Google Scholar 
Hossain, D., Shih, S. Y., Xiao, X., White, J. & Tsang, W. Y. Cep44 functions in centrosome cohesion by stabilizing rootletin. J. Cell Sci. 133 (2020).Atorino, E. S., Hata, S., Funaya, C., Neuner, A. & Schiebel, E. CEP44 ensures the formation of bona fide centriole wall, a requirement for the centriole-to-centrosome conversion. Nat. Commun. 11, 903 (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Breslow, D. K. et al. A CRISPR-based screen for Hedgehog signaling provides insights into ciliary function and ciliopathies. Nat. Genet 50, 460–471 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fackrell, K., Parul Bobins, L. & Tomida, J. FAM35A/SHLD2/RINN2: A novel determinant of double strand break repair pathway choice and genome stability in cancer. Environ. Mol. Mutagen 61, 709–715 (2020).Article 
CAS 
PubMed 

Google Scholar 
Yan, F. et al. Genetic association and functional analysis of rs7903456 in FAM35A gene and hyperuricemia: a population based study. Sci. Rep. 8, 9579 (2018).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Dungrawala, H. et al. RADX promotes genome stability and modulates chemosensitivity by regulating rad51 at replication forks. Mol. Cell 67, 374–386.e5 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Acharya, A. et al. Mechanism of DNA unwinding by hexameric MCM8-9 in complex with HROB. Res. Sq (2023).Liu, X. & Wang, C. Pan-Cancer Analysis Identified Homologous Recombination Factor With OB-Fold (HROB) as a Potential Biomarker for Various Tumor Types. Front Genet 13, 904060 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Saredi, G. & Rouse, J. Ways to unwind with HROB, a new player in homologous recombination. Genes Dev. 33, 1293–1294 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tucker, E. J. et al. Meiotic genes in premature ovarian insufficiency: variants in HROB and REC8 as likely genetic causes. Eur. J. Hum. Genet 30, 219–228 (2022).Article 
CAS 
PubMed 

Google Scholar 
Wang, C. et al. C17orf53 is identified as a novel gene involved in inter-strand crosslink repair. DNA Repair (Amst.) 95, 102946 (2020).Article 
CAS 
PubMed 

Google Scholar 
Wu, X. et al. Genetic analysis of novel pathogenic gene HROB in a family with primary ovarian insufficiency. Zhejiang Da Xue Xue Bao Yi Xue Ban. 52, 727–731 (2023).PubMed 

Google Scholar 
Xu, Y., Greenberg, R. A., Schonbrunn, E. & Wang, P. J. Meiosis-specific proteins MEIOB and SPATA22 cooperatively associate with the single-stranded DNA-binding replication protein A complex and DNA double-strand breaks. Biol. Reprod. 96, 1096–1104 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Heddar, A. et al. Genetic landscape of a large cohort of Primary Ovarian Insufficiency: New genes and pathways and implications for personalized medicine. EBioMedicine 84, 104246 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Feng, Y. et al. FAM72A antagonizes UNG2 to promote mutagenic repair during antibody maturation. Nature 600, 324–328 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rogier, M. et al. Fam72a enforces error-prone DNA repair during antibody diversification. Nature 600, 329–333 (2021).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Guo, C. et al. Ugene, a newly identified protein that is commonly overexpressed in cancer and binds uracil DNA glycosylase. Cancer Res. 68, 6118–6126 (2008).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mer, G. et al. Structural basis for the recognition of DNA repair proteins UNG2, XPA, and RAD52 by replication factor RPA. Cell 103, 449–456 (2000).Article 
CAS 
PubMed 

Google Scholar 
Otterlei, M. et al. Post-replicative base excision repair in replication foci. EMBO J. 18, 3834–3844 (1999).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hayran, A. B. et al. RPA guides UNG to uracil in ssDNA to facilitate antibody class switching and repair of mutagenic uracil at the replication fork. Nucleic Acids Res. 52, 784–800 (2024).Article 
PubMed 

Google Scholar 
Jackson, S. P. & Bartek, J. The DNA-damage response in human biology and disease. Nature 461, 1071–1078 (2009).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Curtin, N. J. & Szabo, C. Poly(ADP-ribose) polymerase inhibition: past, present and future. Nat. Rev. Drug Discov. 19, 711–736 (2020).Article 
CAS 
PubMed 

Google Scholar 
Karlberg, T. et al. Structural basis for lack of ADP-ribosyltransferase activity in poly(ADP-ribose) polymerase-13/zinc finger antiviral protein. J. Biol. Chem. 290, 7336–7344 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Guo, X., Ma, J., Sun, J. & Gao, G. The zinc-finger antiviral protein recruits the RNA processing exosome to degrade the target mRNA. Proc. Natl Acad. Sci. USA 104, 151–156 (2007).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Garland, W. et al. Chromatin modifier HUSH co-operates with RNA decay factor NEXT to restrict transposable element expression. Mol. Cell 82, 1691–1707 e8 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pfleiderer, M. M. & Galej, W. P. Structure of the catalytic core of the Integrator complex. Mol. Cell 81, 1246–1259.e8 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Perry, J. & Kleckner, N. The ATRs, ATMs, and TORs are giant HEAT repeat proteins. Cell 112, 151–155 (2003).Article 
CAS 
PubMed 

Google Scholar 
Imseng, S., Aylett, C. H. & Maier, T. Architecture and activation of phosphatidylinositol 3-kinase related kinases. Curr. Opin. Struct. Biol. 49, 177–189 (2018).Article 
CAS 
PubMed 

Google Scholar 
Shakeel, S. et al. Structure of the Fanconi anaemia monoubiquitin ligase complex. Nature 575, 234–237 (2019).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Joo, W. et al. Structure of the FANCI-FANCD2 complex: insights into the Fanconi anemia DNA repair pathway. Science 333, 312–316 (2011).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Taylor, A. M. R. et al. Chromosome instability syndromes. Nat. Rev. Dis. Prim. 5, 64 (2019).Article 
PubMed 

Google Scholar 
Groelly, F. J., Fawkes, M., Dagg, R. A., Blackford, A. N. & Tarsounas, M. Targeting DNA damage response pathways in cancer. Nat. Rev. Cancer 23, 78–94 (2023).Article 
CAS 
PubMed 

Google Scholar 
Gene Ontology, C. The gene ontology resource: enriching a GOld mine. Nucleic Acids Res 49, D325–D334 (2021).Article 

Google Scholar 
Kotlyar, M., Pastrello, C., Sheahan, N. & Jurisica, I. Integrated interactions database: tissue-specific view of the human and model organism interactomes. Nucleic Acids Res. 44, D536–D541 (2016).Article 
CAS 
PubMed 

Google Scholar 
Eisenberg, E. & Levanon, E. Y. Human housekeeping genes, revisited. Trends Genet 29, 569–574 (2013).Article 
CAS 
PubMed 

Google Scholar 
Mellacheruvu, D. et al. The CRAPome: a contaminant repository for affinity purification-mass spectrometry data. Nat. Methods 10, 730–736 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Russo, P. S. T. et al. CEMiTool: a Bioconductor package for performing comprehensive modular co-expression analyses. BMC Bioinforma. 19, 56 (2018).Article 

Google Scholar 
Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402 (1997).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sadreyev, R. I., Tang, M., Kim, B. H. & Grishin, N. V. COMPASS server for remote homology inference. Nucleic Acids Res. 35, W653–W658 (2007).Article 
PubMed 
PubMed Central 

Google Scholar 
Edgar, R. C. & Sjolander, K. COACH: profile-profile alignment of protein families using hidden Markov models. Bioinformatics 20, 1309–1318 (2004).Article 
CAS 
PubMed 

Google Scholar 
Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Schmid, F. M. et al. IFT20 modulates ciliary PDGFRalpha signaling by regulating the stability of Cbl E3 ubiquitin ligases. J. Cell Biol. 217, 151–161 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Schou, K. B., Morthorst, S. K., Christensen, S. T. & Pedersen, L. B. Identification of conserved, centrosome-targeting ASH domains in TRAPPII complex subunits and TRAPPC8. Cilia 3, 6 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Batth, T. S. et al. Protein aggregation capture on microparticles enables multipurpose proteomics sample preparation. Mol. Cell Proteom. 18, 1027–1035 (2019).Article 
CAS 

Google Scholar 
Carbon, S. et al. AmiGO: online access to ontology and annotation data. Bioinformatics 25, 288–289 (2009).Article 
CAS 
PubMed 

Google Scholar 
Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles