Spatially resolved analysis of pancreatic cancer identifies therapy-associated remodeling of the tumor microenvironment

Siegel, R. L., Giaquinto, A. N. & Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 74, 12–49 (2024).Article 
PubMed 

Google Scholar 
Springfeld, C. et al. Neoadjuvant therapy for pancreatic cancer. Nat. Rev. Clin. Oncol. 20, 318–337 (2023).Article 
PubMed 

Google Scholar 
Evan, T., Wang, V. M. Y. & Behrens, A. The roles of intratumour heterogeneity in the biology and treatment of pancreatic ductal adenocarcinoma. Oncogene 41, 4686–4695 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ho, W. J., Jaffee, E. M. & Zheng, L. The tumour microenvironment in pancreatic cancer – clinical challenges and opportunities. Nat. Rev. Clin. Oncol. 17, 527–540 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Halbrook, C. J., Lyssiotis, C. A., Pasca di Magliano, M. & Maitra, A. Pancreatic cancer: advances and challenges. Cell 186, 1729–1754 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hwang, W. L. et al. Single-nucleus and spatial transcriptome profiling of pancreatic cancer identifies multicellular dynamics associated with neoadjuvant treatment. Nat. Genet. 54, 1178–1191 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Grünwald, B. T. et al. Spatially confined sub-tumor microenvironments in pancreatic cancer. Cell 184, 5577–5592.e18 (2021).Article 
PubMed 

Google Scholar 
Falcomatà, C. et al. Selective multi-kinase inhibition sensitizes mesenchymal pancreatic cancer to immune checkpoint blockade by remodeling the tumor microenvironment. Nat. Cancer 3, 318–336 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Tu, M. et al. TNF-α-producing macrophages determine subtype identity and prognosis via AP1 enhancer reprogramming in pancreatic cancer. Nat. Cancer 2, 1185–1203 (2021).Article 
CAS 
PubMed 

Google Scholar 
Guo, J. A. et al. Refining the molecular framework for pancreatic cancer with single-cell and spatial technologies. Clin. Cancer Res. 27, 3825–3833 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cui Zhou, D. et al. Spatially restricted drivers and transitional cell populations cooperate with the microenvironment in untreated and chemo-resistant pancreatic cancer. Nat. Genet. 54, 1390–1405 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bärthel, S., Falcomatà, C., Rad, R., Theis, F. J. & Saur, D. Single-cell profiling to explore pancreatic cancer heterogeneity, plasticity and response to therapy. Nat. Cancer 4, 454–467 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Ligorio, M. et al. Stromal microenvironment shapes the intratumoral architecture of pancreatic cancer. Cell 178, 160–175 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Moncada, R. et al. Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas. Nat. Biotechnol. 38, 333–342 (2020).Article 
CAS 
PubMed 

Google Scholar 
Giladi, A. et al. Dissecting cellular crosstalk by sequencing physically interacting cells. Nat. Biotechnol. 38, 629–637 (2020).Article 
CAS 
PubMed 

Google Scholar 
Williams, C. G., Lee, H. J., Asatsuma, T., Vento-Tormo, R. & Haque, A. An introduction to spatial transcriptomics for biomedical research. Genome Med. 14, 68 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jin, S. et al. Inference and analysis of cell–cell communication using CellChat. Nat. Commun. 12, 1088 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Browaeys, R., Saelens, W. & Saeys, Y. NicheNet: modeling intercellular communication by linking ligands to target genes. Nat. Methods 17, 159–162 (2020).Article 
CAS 
PubMed 

Google Scholar 
He, S. et al. High-plex imaging of RNA and proteins at subcellular resolution in fixed tissue by spatial molecular imaging. Nat. Biotechnol. 40, 1794–1806 (2022).Article 
CAS 
PubMed 

Google Scholar 
Allen, W. E., Blosser, T. R., Sullivan, Z. A., Dulac, C. & Zhuang, X. Molecular and spatial signatures of mouse brain aging at single-cell resolution. Cell 186, 194–208.e18 (2023).Article 
CAS 
PubMed 

Google Scholar 
Petukhov, V. et al. Cell segmentation in imaging-based spatial transcriptomics. Nat. Biotechnol. 40, 345–354 (2022).Article 
CAS 
PubMed 

Google Scholar 
Danaher, P. et al. Insitutype: likelihood-based cell typing for single cell spatial transcriptomics. Preprint at bioRxiv https://doi.org/10.1101/2022.10.19.512902 (2022).Moffitt, R. A. et al. Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat. Genet. 47, 1168–1178 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Öhlund, D. et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J. Exp. Med. 214, 579–596 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Elyada, E. et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 9, 1102–1123 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Capucetti, A., Albano, F. & Bonecchi, R. Multiple roles for chemokines in neutrophil biology. Front. Immunol. 11, 1259 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ester, M., Kriegel, H., Sander, J. & Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proc. 2nd International Conference on Knowledge Discovery and Data Mining 226–231 (AAAI Press, 1996).Schubert, E., Sander, J., Ester, M., Kriegel, H. P. & Xu, X. DBSCAN revisited, revisited: why and how you should still use DBSCAN. ACM TODS 42, 1–21 (2017).Article 

Google Scholar 
Zhu, J., Shang, L. & Zhou, X. SRTsim: spatial pattern preserving simulations for spatially resolved transcriptomics. Genome Biol. 24, 39 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Sahai, E. et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 20, 174–186 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hosein, A. N., Brekken, R. A. & Maitra, A. Pancreatic cancer stroma: an update on therapeutic targeting strategies. Nat. Rev. Gastroenterol. Hepatol. 17, 487–505 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Chen, Y., Yu, G., Yu, D. & Zhu, M. PKCalpha-induced drug resistance in pancreatic cancer cells is associated with transforming growth factor-beta1. J. Exp. Clin. Cancer Res. 29, 104 (2010).Article 
PubMed 
PubMed Central 

Google Scholar 
Singh, S., Srivastava, S. K., Bhardwaj, A., Owen, L. B. & Singh, A. P. CXCL12–CXCR4 signalling axis confers gemcitabine resistance to pancreatic cancer cells: a novel target for therapy. Br. J. Cancer 103, 1671–1679 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ren, Y. et al. CXCR3 confers sorafenib resistance of HCC cells through regulating metabolic alteration and AMPK pathway. Am. J. Transl. Res 12, 825 (2020).CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, J. et al. Overexpression of CXCR4 is significantly associated with cisplatin-based chemotherapy resistance and can be a prognostic factor in epithelial ovarian cancer. BMB Rep. 47, 33 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Zhu, S. et al. Expression profile-based screening for critical genes reveals S100A4, ACKR3 and CDH1 in docetaxel-resistant prostate cancer cells. Aging 11, 12754–12772 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shi, Y. et al. Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring. Nature 569, 131–135 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wu, X. et al. IL-6 secreted by cancer-associated fibroblasts promotes epithelial–mesenchymal transition and metastasis of gastric cancer via JAK2/STAT3 signaling pathway. Oncotarget 8, 20741–20750 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Ebbing, E. A. et al. Stromal-derived interleukin 6 drives epithelial-to-mesenchymal transition and therapy resistance in esophageal adenocarcinoma. Proc. Natl Acad. Sci. USA 116, 2237–2242 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Vicent, S. et al. Cross-species functional analysis of cancer-associated fibroblasts identifies a critical role for CLCF1 and IL-6 in non-small cell lung cancer in vivo. Cancer Res 72, 5744–5756 (2012).Article 
CAS 
PubMed 

Google Scholar 
Kim, J. W. et al. Antitumor activity of an engineered decoy receptor targeting CLCF1–CNTFR signaling in lung adenocarcinoma. Nat. Med. 25, 1783–1795 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jiang, Y. et al. CLCF1 is a novel potential immune-related target with predictive value for prognosis and immunotherapy response in glioma. Front. Immunol. 13, 810832 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Murakami, M., Kamimura, D. & Hirano, T. Pleiotropy and specificity: insights from the interleukin 6 family of cytokines. Immunity 50, 812–831 (2019).Article 
CAS 
PubMed 

Google Scholar 
Lelièvre, E. et al. Signaling pathways recruited by the cardiotrophin-like cytokine/cytokine-like factor-1 composite cytokine: specific requirement of the membrane-bound form of ciliary neurotrophic factor receptor alpha component. J. Biol. Chem. 276, 22476–22484 (2001).Article 
PubMed 

Google Scholar 
Jin, W. Role of JAK/STAT3 signaling in the regulation of metastasis, the transition of cancer stem cells, and chemoresistance of cancer by epithelial–mesenchymal transition. Cells 9, 217 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Biffi, G. et al. IL1-induced JAK/STAT signaling is antagonized by TGFβ to shape CAF heterogeneity in pancreatic ductal adenocarcinoma. Cancer Discov. 9, 282–301 (2019).Article 
PubMed 

Google Scholar 
Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. & Morishima, K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45, D353–D361 (2017).Article 
CAS 
PubMed 

Google Scholar 
Han, H. et al. TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res 46, D380–D386 (2018).Article 
CAS 
PubMed 

Google Scholar 
Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes. Nat. Protoc. 15, 1484–1506 (2020).Article 
CAS 
PubMed 

Google Scholar 
Dimitrov, D. et al. Comparison of methods and resources for cell–cell communication inference from single-cell RNA-Seq data. Nat. Commun. 13, 3224 (2022).Article 
PubMed 

Google Scholar 
Mao, X. et al. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol. Cancer 20, 131 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Joost, P. et al. Heterogenous mismatch-repair status in colorectal cancer. Diagn. Pathol. 9, 126 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Alers, J. C. et al. Cytogenetic heterogeneity and histologic tumor growth patterns in prostatic cancer. Cytometry 21, 84–94 (1995).Article 
CAS 
PubMed 

Google Scholar 
Cang, Z. & Nie, Q. Inferring spatial and signaling relationships between cells from single cell transcriptomic data. Nat. Commun. 11, 2084 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liu, Z., Sun, D. & Wang, C. Evaluation of cell–cell interaction methods by integrating single-cell RNA sequencing data with spatial information. Genome Biol. 23, 218 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Cang, Z. et al. Screening cell–cell communication in spatial transcriptomics via collective optimal transport. Nat. Methods 20, 218–228 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mantovani, A., Allavena, P., Marchesi, F. & Garlanda, C. Macrophages as tools and targets in cancer therapy. Nat. Rev. Drug Discov. 21, 799–820 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Boraschi-Diaz, I., Wang, J., Mort, J. S. & Komarova, S. V. Collagen type I as a ligand for receptor-mediated signaling. Front. Phys. 5, 12 (2017).Article 

Google Scholar 
Seino, T. et al. Human pancreatic tumor organoids reveal loss of stem cell niche factor dependence during disease progression. Cell Stem Cell 22, 454–467.e6 (2018).Article 
CAS 
PubMed 

Google Scholar 
Fuertes, G. et al. Noncanonical Wnt signaling promotes colon tumor growth, chemoresistance and tumor fibroblast activation. EMBO Rep. 24, e54895 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Martin-Orozco, E., Sanchez-Fernandez, A., Ortiz-Parra, I. & Ayala-San Nicolas, M. WNT signaling in tumors: the way to evade drugs and immunity. Front. Immunol. 10, 2854 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Spada, S., Tocci, A., Di Modugno, F. & Nisticò, P. Fibronectin as a multiregulatory molecule crucial in tumor matrisome: from structural and functional features to clinical practice in oncology. J. Exp. Clin. Cancer Res. 40, 102 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sun, W. H. et al. CXCR3 isoform A promotes head and neck cancer progression by enhancing stem-like property and chemoresistance. J. Oral. Pathol. Med. 51, 791–800 (2022).Article 
CAS 
PubMed 

Google Scholar 
Lu, Y. et al. Spatial transcriptome profiling by MERFISH reveals fetal liver hematopoietic stem cell niche architecture. Cell Discov. 7, 47 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Moffitt, J. R. et al. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science 362, eaau5324 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Marshall, J. L. et al. High-resolution Slide-seqV2 spatial transcriptomics enables discovery of disease-specific cell neighborhoods and pathways. iScience 25, 104097 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Collisson, E. A., Bailey, P., Chang, D. K. & Biankin, A. V. Molecular subtypes of pancreatic cancer. Nat. Rev. Gastroenterol. Hepatol. 16, 207–220 (2019).Article 
PubMed 

Google Scholar 
Guo, J. A. et al. Abstract 5775: GLIS3 drives a neural-like malignant state enriched after neoadjuvant treatment in pancreatic cancer. Cancer Res 83, 5775 (2023).Article 

Google Scholar 
Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18, 100–106 (2021).Article 
CAS 
PubMed 

Google Scholar 
Pachitariu, M. & Stringer, C. Cellpose 2.0: how to train your own model. Nat. Methods 19, 1634–1641 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118–127 (2007).Article 
PubMed 

Google Scholar 
Villani, C. Optimal Transport: Old and New Vol. 338 (Springer, 2009).Ramilowski, J. A. et al. A draft network of ligand–receptor-mediated multicellular signalling in human. Nat. Commun. 6, 7866 (2015).Article 
CAS 
PubMed 

Google Scholar 
Thul, P. J. et al. A subcellular map of the human proteome. Science 356, eaal3321 (2017).Article 
PubMed 

Google Scholar 
Chen, Z. et al. Forest fire clustering for single-cell sequencing combines iterative label propagation with parallelized monte carlo simulations. Nat. Commun. 13, 3538 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gates, A. J. & Ahn, Y.-Y. The impact of random models on clustering similarity. J. Mach. Learn. Res. 18, 3049–3076 (2017).
Google Scholar 
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodol.) 57, 289–300 (1995).Article 

Google Scholar 
Cokelaer, T. et al. BioServices: a common Python package to access biological Web Services programmatically. Bioinformatics 29, 3241–3242 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mi, H., Muruganujan, A., Ebert, D., Huang, X. & Thomas, P. D. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res 47, D419–D426 (2019).Article 
CAS 
PubMed 

Google Scholar 
Freed-Pastor, W. A. et al. The CD155/TIGIT axis promotes and maintains immune evasion in neoantigen-expressing pancreatic cancer. Cancer Cell 39, 1342–1360.e14 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shiau, C. et al. PDAC-SMI and co-culture dataset. Mendeley Data https://doi.org/10.17632/kx6b69n3cb.1 (2024).Shiau, C., et al. PDAC-SMI transcript locations. Zenodo https://doi.org/10.5281/zenodo.7963531 (2023).Shiau, C., Cao, J., Hemberg, M. & Hwang, W. L. Codes for PDAC-SMI and co-culture data. Zenodo https://doi.org/10.5281/zenodo.12707341 (2024).

Hot Topics

Related Articles