A protein expression atlas on tissue samples and cell lines from cancer patients provides insights into tumor heterogeneity and dependencies

Ding, L. et al. Perspective on oncogenic processes at the end of the beginning of cancer genomics. Cell 173, 305–320 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hutter, C. & Zenklusen, J. C. The Cancer Genome Atlas: creating lasting value beyond its data. Cell 173, 283–285 (2018).Article 
CAS 
PubMed 

Google Scholar 
Ghandi, M. et al. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature 569, 503–508 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, H. et al. The landscape of cancer cell line metabolism. Nat. Med. 25, 850–860 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Behan, F. M. et al. Prioritization of cancer therapeutic targets using CRISPR–Cas9 screens. Nature 568, 511–516 (2019).Article 
CAS 
PubMed 

Google Scholar 
Dempster, J. M. et al. Agreement between two large pan-cancer CRISPR–Cas9 gene dependency data sets. Nat. Commun. 10, 5817 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Garnett, M. J. et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483, 570–575 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Meyers, R. M. et al. Computational correction of copy number effect improves specificity of CRISPR–Cas9 essentiality screens in cancer cells. Nat. Genet. 49, 1779–1784 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rodriguez, H., Zenklusen, J. C., Staudt, L. M., Doroshow, J. H. & Lowy, D. R. The next horizon in precision oncology: proteogenomics to inform cancer diagnosis and treatment. Cell 184, 1661–1670 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Akbani, R. et al. Realizing the promise of reverse phase protein arrays for clinical, translational, and basic research: a workshop report: the RPPA (Reverse Phase Protein Array) society. Mol. Cell. Proteomics 13, 1625–1643 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Akbani, R. et al. A pan-cancer proteomic perspective on The Cancer Genome Atlas. Nat. Commun. 5, 3887 (2014).Article 
CAS 
PubMed 

Google Scholar 
Li, J. et al. Characterization of human cancer cell lines by reverse-phase protein arrays. Cancer Cell 31, 225–239 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhao, W. et al. Large-scale characterization of drug responses of clinically relevant proteins in cancer cell lines. Cancer Cell 38, 829–843 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bailey, M. H. et al. Comprehensive characterization of cancer driver genes and mutations. Cell 173, 371–385 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Berger, A. C. et al. A comprehensive pan-cancer molecular study of gynecologic and breast cancers. Cancer Cell 33, 690–705 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fang, Y. et al. Sequential therapy with PARP and WEE1 inhibitors minimizes toxicity while maintaining efficacy. Cancer Cell 35, 851–867 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, Y. et al. A pan-cancer proteogenomic atlas of PI3K/AKT/mTOR pathway alterations. Cancer Cell 31, 820–832 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, J. et al. Explore, visualize, and analyze functional cancer proteomic data using The Cancer Proteome Atlas. Cancer Res. 77, e51–e54 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, J. et al. TCPA: a resource for cancer functional proteomics data. Nat. Methods 10, 1046–1047 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Siwak, D. R., Li, J., Akbani, R., Liang, H. & Lu, Y. Analytical platforms 3: processing samples via the RPPA pipeline to generate large-scale data for clinical studies. Adv. Exp. Med. Biol. 1188, 113–147 (2019).Article 
CAS 
PubMed 

Google Scholar 
Nusinow, D. P. et al. Quantitative proteomics of the Cancer Cell Line Encyclopedia. Cell 180, 387–402 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Basu, A. et al. An interactive resource to identify cancer genetic and lineage dependencies targeted by small molecules. Cell 154, 1151–1161 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Corsello, S. M. et al. Discovering the anti-cancer potential of non-oncology drugs by systematic viability profiling. Nat. Cancer 1, 235–248 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Iorio, F. et al. A landscape of pharmacogenomic interactions in cancer. Cell 166, 740–754 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jin, X. et al. A metastasis map of human cancer cell lines. Nature 588, 331–336 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, M. M. et al. TCPA v3.0: an integrative platform to explore the pan-cancer analysis of functional proteomic data. Mol. Cell. Proteomics 18, S15–S25 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Thorsson, V. et al. The immune landscape of cancer. Immunity 48, 812–830 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Frejno, M. et al. Proteome activity landscapes of tumor cell lines determine drug responses. Nat. Commun. 11, 3639 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hoadley, K. A. et al. Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell 173, 291–304 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Szklarczyk, D. et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613 (2019).Article 
CAS 
PubMed 

Google Scholar 
Tsherniak, A. et al. Defining a cancer dependency map. Cell 170, 564–576 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dempster, J. M. et al. Chronos: a cell population dynamics model of CRISPR experiments that improves inference of gene fitness effects. Genome Biol. 22, 343 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Pacini, C. et al. Integrated cross-study datasets of genetic dependencies in cancer. Nat. Commun. 12, 1661 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Quintas-Cardama, A. & Cortes, J. Molecular biology of BCR–ABL1-positive chronic myeloid leukemia. Blood 113, 1619–1630 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pleasance, E. D. et al. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463, 191–196 (2010).Article 
CAS 
PubMed 

Google Scholar 
Chen, H. et al. Comprehensive assessment of computational algorithms in predicting cancer driver mutations. Genome Biol 21, 43 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Ng, P. K. et al. Systematic functional annotation of somatic mutations in cancer. Cancer Cell 33, 450–462 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002).Article 
CAS 
PubMed 

Google Scholar 
Menzer, C. et al. Targeted therapy in advanced melanoma with rare BRAF mutations. J. Clin. Oncol. 37, 3142–3151 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yaeger, R. & Corcoran, R. B. Targeting alterations in the Raf–MEK pathway. Cancer Discov. 9, 329–341 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lavoie, H., Gagnon, J. & Therrien, M. ERK signalling: a master regulator of cell behaviour, life and fate. Nat. Rev. Mol. Cell Biol. 21, 607–632 (2020).Article 
CAS 
PubMed 

Google Scholar 
Yao, Z. et al. BRAF mutants evade ERK-dependent feedback by different mechanisms that determine their sensitivity to pharmacologic inhibition. Cancer Cell 28, 370–383 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Negrao, M. V. et al. Molecular landscape of BRAF-mutant NSCLC reveals an association between clonality and driver mutations and identifies targetable non-V600 driver mutations. J. Thorac. Oncol. 15, 1611–1623 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, S. H. et al. Oncogenic BRAF deletions that function as homodimers and are sensitive to inhibition by Raf dimer inhibitor LY3009120. Cancer Discov. 6, 300–315 (2016).Article 
CAS 
PubMed 

Google Scholar 
Eisenhardt, A. E. et al. Functional characterization of a BRAF insertion mutant associated with pilocytic astrocytoma. Int. J. Cancer 129, 2297–2303 (2011).Article 
CAS 
PubMed 

Google Scholar 
O’Neil, N. J., Bailey, M. L. & Hieter, P. Synthetic lethality and cancer. Nat. Rev. Genet. 18, 613–623 (2017).Article 
PubMed 

Google Scholar 
Lee, J. S. et al. Synthetic lethality-mediated precision oncology via the tumor transcriptome. Cell 184, 2487–2502 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jaaks, P. et al. Effective drug combinations in breast, colon and pancreatic cancer cells. Nature 603, 166–173 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Abourehab, M. A. S., Alqahtani, A. M., Youssif, B. G. M. & Gouda, A. M.Globally approved EGFR inhibitors: insights into their syntheses, target kinases, biological activities, receptor interactions, and metabolism. Molecules 26, 6677 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sakamoto, K. M. & Frank, D. A. CREB in the pathophysiology of cancer: implications for targeting transcription factors for cancer therapy. Clin. Cancer Res. 15, 2583–2587 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Riccio, A., Ahn, S., Davenport, C. M., Blendy, J. A. & Ginty, D. D. Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons. Science 286, 2358–2361 (1999).Article 
CAS 
PubMed 

Google Scholar 
Srinivasan, S. et al. Tobacco carcinogen-induced production of GM-CSF activates CREB to promote pancreatic cancer. Cancer Res. 78, 6146–6158 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Qin, Y. et al. Interfering MSN–NONO complex-activated CREB signaling serves as a therapeutic strategy for triple-negative breast cancer. Sci. Adv. 6, eaaw9960 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fares, J., Fares, M. Y., Khachfe, H. H., Salhab, H. A. & Fares, Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct. Target. Ther. 5, 28 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Khan, I. & Steeg, P. S. Metastasis suppressors: functional pathways. Lab. Invest. 98, 198–210 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Nguyen, D. T. et al. Pharos: collating protein information to shed light on the druggable genome. Nucleic Acids Res. 45, D995–D1002 (2017).Article 
CAS 
PubMed 

Google Scholar 
Dou, Y. et al. Proteogenomic characterization of endometrial carcinoma. Cell 180, 729–748 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gillette, M. A. et al. Proteogenomic characterization reveals therapeutic vulnerabilities in lung adenocarcinoma. Cell 182, 200–225 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Vasaikar, S. et al. Proteogenomic analysis of human colon cancer reveals new therapeutic opportunities. Cell 177, 1035–1049 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tibes, R. et al. Reverse phase protein array: validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells. Mol. Cancer Ther. 5, 2512–2521 (2006).Article 
CAS 
PubMed 

Google Scholar 
Hennessy, B. T. et al. A technical assessment of the utility of reverse phase protein arrays for the study of the functional proteome in non-microdissected human breast cancers. Clin. Proteomics 6, 129–151 (2010).Article 
CAS 
PubMed 

Google Scholar 
Hu, J. et al. Non-parametric quantification of protein lysate arrays. Bioinformatics 23, 1986–1994 (2007).Article 
CAS 
PubMed 

Google Scholar 
Neeley, E. S., Baggerly, K. A. & Kornblau, S. M. Surface adjustment of reverse phase protein arrays using positive control spots. Cancer Inform. 11, 77–86 (2012).Article 
PubMed 
PubMed Central 

Google Scholar 
Ju, Z. et al. Development of a robust classifier for quality control of reverse-phase protein arrays. Bioinformatics 31, 912–918 (2015).Article 
CAS 
PubMed 

Google Scholar 
Gonzalez-Angulo, A. M. et al. Functional proteomics can define prognosis and predict pathologic complete response in patients with breast cancer. Clin. Proteomics 8, 11 (2011).Article 
PubMed 
PubMed Central 

Google Scholar 
Wilkerson, M. D. & Hayes, D. N. ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics 26, 1572–1573 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. circlize implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014).Article 
CAS 
PubMed 

Google Scholar 
Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016).Article 
CAS 
PubMed 

Google Scholar 
Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sanchez-Vega, F. et al. Oncogenic signaling pathways in The Cancer Genome Atlas. Cell 173, 321–337 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dogruluk, T. et al. Identification of variant-specific functions of PIK3CA by rapid phenotyping of rare mutations. Cancer Res. 75, 5341–5354 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tsang, Y. H. et al. Functional annotation of rare gene aberration drivers of pancreatic cancer. Nat. Commun. 7, 10500 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cheung, L. W. et al. Naturally occurring neomorphic PIK3R1 mutations activate the MAPK pathway, dictating therapeutic response to MAPK pathway inhibitors. Cancer Cell 26, 479–494 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liang, H. et al. Whole-exome sequencing combined with functional genomics reveals novel candidate driver cancer genes in endometrial cancer. Genome Res. 22, 2120–2129 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wickham, H. ggplot2: Elegant Graphics for Data Analysis 2nd edn (Springer, 2016).

Hot Topics

Related Articles