Origins of enhanced oxygen reduction activity of transition metal nitrides

Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486, 43–51 (2012).Article 
CAS 
PubMed 

Google Scholar 
Shao, M., Chang, Q., Dodelet, J.-P. & Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 116, 3594–3657 (2016).Article 
CAS 
PubMed 

Google Scholar 
Yarlagadda, V. et al. Boosting fuel cell performance with accessible carbon mesopores. ACS Energy Lett. 3, 618–621 (2018).Article 
CAS 

Google Scholar 
Jaganmohan, M. Mine production of platinum worldwide from 2010 to 2021. Statista https://www.statista.com/statistics/1170691/mine-production-of-platinum-worldwide/ (2024).Lu, S., Pan, J., Huang, A., Zhuang, L. & Lu, J. Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts. Proc. Natl Acad. Sci. USA 105, 20611–20614 (2008).Article 
CAS 
PubMed Central 

Google Scholar 
Yang, Y. et al. Electrocatalysis in alkaline media and alkaline membrane-based energy technologies. Chem. Rev. 122, 6117–6321 (2022).Article 
CAS 
PubMed 

Google Scholar 
Ni, W. et al. An efficient nickel hydrogen oxidation catalyst for hydroxide exchange membrane fuel cells. Nat. Mater. 21, 804–810 (2022).Article 
CAS 
PubMed 

Google Scholar 
Zhao, Q., Yan, Z., Chen, C. & Chen, J. Spinels: controlled preparation, oxygen reduction/evolution reaction application, and beyond. Chem. Rev. 117, 10121–10211 (2017).Article 
CAS 
PubMed 

Google Scholar 
Hong, W. T. et al. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ. Sci. 8, 1404–1427 (2015).Article 
CAS 

Google Scholar 
Wang, Y., Li, J. & Wei, Z. Transition-metal-oxide-based catalysts for the oxygen reduction reaction. J. Mater. Chem. A 6, 8194–8209 (2018).Article 
CAS 

Google Scholar 
Liang, Y. et al. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10, 780–786 (2011).Article 
CAS 
PubMed 

Google Scholar 
Tong, Y. et al. A bifunctional hybrid electrocatalyst for oxygen reduction and evolution: cobalt oxide nanoparticles strongly coupled to B,N-decorated graphene. Angew. Chem. 56, 7121–7125 (2017).Article 
CAS 

Google Scholar 
Gorlin, Y., Chung, C. J., Nordlund, D., Clemens, B. M. & Jaramillo, T. F. Mn3O4 supported on glassy carbon: an active non-precious metal catalyst for the oxygen reduction reaction. ACS Catal. 2, 2687–2694 (2012).Article 
CAS 

Google Scholar 
Stoerzinger, K. A., Risch, M., Han, B. & Shao-Horn, Y. Recent insights into manganese oxides in catalyzing oxygen reduction kinetics. ACS Catal. 5, 6021–6031 (2015).Article 
CAS 

Google Scholar 
Wang, Y. et al. Synergistic Mn–Co catalyst outperforms Pt on high-rate oxygen reduction for alkaline polymer electrolyte fuel cells. Nat. Commun. 10, 1506 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Zhou, Y. et al. Revealing the dominant chemistry for oxygen reduction reaction on small oxide nanoparticles. ACS Catal. 8, 673–677 (2018).Article 
CAS 

Google Scholar 
Yang, Y. et al. Octahedral spinel electrocatalysts for alkaline fuel cells. Proc. Natl Acad. Sci. USA 116, 24425–24432 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yang, Y. et al. Epitaxial thin-film spinel oxides as oxygen reduction electrocatalysts in alkaline media. Chem. Mater. 33, 4006–4013 (2021).Article 
CAS 

Google Scholar 
Bredar, A. R C. et al. Oxygen reduction electrocatalysis with epitaxially grown spinel MnFe2O4 and Fe3O4. ACS Catal. 12, 3577–3588 (2022).Zheng, J. et al. Recent advances in nanostructured transition metal nitrides for fuel cells. J. Mater. Chem. A 8, 20803–20818 (2020).Article 
CAS 

Google Scholar 
Wang, H. et al. Transition metal nitrides for electrochemical energy applications. Chem. Soc. Rev. 50, 1354–1390 (2021).Article 
PubMed 

Google Scholar 
Chen, P. et al. Metallic Co4N porous nanowire arrays activated by surface oxidation as electrocatalysts for the oxygen evolution reaction. Angew. Chem. 54, 14710–14714 (2015).Article 
CAS 

Google Scholar 
Walter, C. et al. A molecular approach to manganese nitride acting as a high performance electrocatalyst in the oxygen evolution reaction. Angew. Chem. 57, 698–702 (2018).Article 
CAS 

Google Scholar 
Yang, Y., Zeng, R., Xiong, Y., Disalvo, F. J. & Abruña, H. D. Cobalt-based nitride-core oxide-shell oxygen reduction electrocatalysts. J. Am. Chem. Soc. 141, 19241–19245 (2019).Article 
CAS 
PubMed 

Google Scholar 
Luo, J. et al. Limitations and improvement strategies for early-transition-metal nitrides as competitive catalysts toward the oxygen reduction reaction. ACS Catal. 6, 6165–6174 (2016).Article 
CAS 

Google Scholar 
Miura, A. et al. Nitrogen-rich manganese oxynitrides with enhanced catalytic activity in the oxygen reduction reaction. Angew. Chem. 55, 7963–7967 (2016).Article 
CAS 

Google Scholar 
Tian, X. L. et al. Formation of a tubular assembly by ultrathin Ti0.8Co0.2N nanosheets as efficient oxygen reduction electrocatalysts for hydrogen–/metal–air fuel cells. ACS Catal. 8, 8970–8975 (2018).Article 
CAS 

Google Scholar 
Yuan, Y. et al. Zirconium nitride catalysts surpass platinum for oxygen reduction. Nat. Mater. 19, 282–286 (2020).Article 
CAS 
PubMed 

Google Scholar 
Zeng, R. et al. Non-precious transition metal nitrides as efficient oxygen reduction electrocatalysts for alkaline fuel cells. Sci. Adv. 8, eabj1584 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Deng, Y.-P. et al. Dynamic electrocatalyst with current-driven oxyhydroxide shell for rechargeable zinc–air battery. Nat. Commun. 11, 1952 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yang, H., Al-Brithen, H., Trifan, E., Ingram, D. C. & Smith, A. R. Crystalline phase and orientation control of manganese nitride grown on MgO(001) by molecular beam epitaxy. J. Appl. Phys. 91, 1053–1059 (2002).Article 
CAS 

Google Scholar 
Sun, W. et al. Thermodynamic routes to novel metastable nitrogen-rich nitrides. Chem. Mater. 29, 6936–6946 (2017).Article 
CAS 

Google Scholar 
Leineweber, A., Niewa, R., Jacobs, H. & Kockelmann, W. The manganese nitrides η-Mn3N2 and θ-Mn6N(5 + x): nuclear and magnetic structures. J. Mater. Chem. 10, 2827–2834 (2000).Article 
CAS 

Google Scholar 
Timoshenko, J. & Roldan Cuenya, B. In situ/operando electrocatalyst characterization by X-ray absorption spectroscopy. Chem. Rev. 121, 882–961 (2021).Article 
CAS 
PubMed 

Google Scholar 
Wang, M. & Feng, Z. Pitfalls in X-ray absorption spectroscopy analysis and interpretation: a practical guide for general users. Curr. Opin. Electrochem. 30, 100803 (2021).Article 
CAS 

Google Scholar 
Wei, C. et al. Approaches for measuring the surface areas of metal oxide electrocatalysts for determining their intrinsic electrocatalytic activity. Chem. Soc. Rev. 48, 2518–2534 (2019).Article 
CAS 
PubMed 

Google Scholar 
Wang, L. et al. Tunable intrinsic strain in two-dimensional transition metal electrocatalysts. Science 363, 870–874 (2019).Article 
CAS 
PubMed 

Google Scholar 
Li, H. et al. Oxidative stability matters: a case study of palladium hydride nanosheets for alkaline fuel cells. J. Am. Chem. Soc. 144, 8106–8114 (2022).Article 
CAS 
PubMed 

Google Scholar 
Davis, R. E., Horvath, G. L. & Tobias, C. W. The solubility and diffusion coefficient of oxygen in potassium hydroxide solutions. Electrochim. Acta 12, 287–297 (1967).Article 
CAS 

Google Scholar 
Fan, J. et al. Bridging the gap between highly active oxygen reduction reaction catalysts and effective catalyst layers for proton exchange membrane fuel cells. Nat. Energy 6, 475–486 (2021).Article 
CAS 

Google Scholar 
Yang, Y. et al. High-loading composition-tolerant Co–Mn spinel oxides with performance beyond 1 W/cm2 in alkaline polymer electrolyte fuel cells. ACS Energy Lett. 4, 1251–1257 (2019).Article 
CAS 

Google Scholar 
Noda, N. et al. Highly oxidizing aqueous environments on early Mars inferred from scavenging pattern of trace metals on manganese oxides. J. Geophys. Res. Planets 124, 1282–1295 (2019).Article 
CAS 

Google Scholar 
Dasog, M. Transition metal nitrides are heating up the field of plasmonics. Chem. Mater. 34, 4249–4258 (2022).Article 
CAS 

Google Scholar 
Wei, J. et al. Probing the oxygen reduction reaction intermediates and dynamic active site structures of molecular and pyrolyzed Fe–N–C electrocatalysts by in situ Raman spectroscopy. ACS Catal. 12, 7811–7820 (2022).Article 
CAS 

Google Scholar 
Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).Article 

Google Scholar 
Mavrikakis, M., Hammer, B. & Nørskov, J. K. Effect of strain on the reactivity of metal surfaces. Phys. Rev. Lett. 81, 2819–2822 (1998).Han, J. W. & Yildiz, B. Mechanism for enhanced oxygen reduction kinetics at the (La,Sr)CoO3−δ/(La,Sr)2CoO4+δ hetero-interface. Energy Environ. Sci. 5, 8598–8607 (2012).Ma, D. et al. Effect of lattice strain on the oxygen vacancy formation and hydrogen adsorption at CeO2(111) surface. Phys. Lett. A 378, 2570–2575 (2014).Article 
CAS 

Google Scholar 
Zeng, Y. et al. Surface reconstruction of water splitting electrocatalysts. Adv. Energy Mater. 12, 2201713 (2022).Article 
CAS 

Google Scholar 
Mefford, J. T. et al. Correlative operando microscopy of oxygen evolution electrocatalysts. Nature 593, 67–73 (2021).Article 
CAS 
PubMed 

Google Scholar 
Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).Article 
CAS 
PubMed 

Google Scholar 
Cueva, P., Hovden, R., Mundy, J. A., Xin, H. L. & Muller, D. A. Data processing for atomic resolution electron energy loss spectroscopy. Microsc. Microanal. 18, 667–675 (2012).Article 
CAS 
PubMed 

Google Scholar 
Yang, Y. et al. In situ X-ray absorption spectroscopy of a synergistic Co–Mn oxide catalyst for the oxygen reduction reaction. J. Am. Chem. Soc. 141, 1463–1466 (2019).Article 
CAS 
PubMed 

Google Scholar 
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11186 (1996).Article 

Google Scholar 
Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles