High-strength, conductive, double-network self-healing antibacterial hydrogel based on the coordination bond and dynamic imine bond

Calvert P. Hydrogels for soft machines. Adv Mater. 2009;21:743–56. https://doi.org/10.1002/adma.200800534Article 

Google Scholar 
Taylor DL, In Het Panhuis M. Self-healing hydrogels. Adv Mater. 2016;28:9060–93. https://doi.org/10.1002/adma.201601613Article 
PubMed 

Google Scholar 
Li S, Dong S, Xu W, Tu S, Yan L, Zhao C, et al. Antibacterial hydrogels. Adv Sci (Weinh). 2018;5:1700527 https://doi.org/10.1002/advs.201700527Article 
PubMed 

Google Scholar 
Tang L, Wu S, Qu J, Gong L, Tang J. A review of conductive hydrogel used in flexible strain sensor. Materials. 2020;13:3947. https://doi.org/10.3390/ma13183947Li L, Scheiger JM, Levkin PA. Design and applications of photoresponsive hydrogels. Adv Mater. 2019;31:1807333.1–7. https://doi.org/10.1002/adma.201807333Ma S, Yu B, Pei X, Zhou F. Structural hydrogels. Polymer. 2016;98:516–35. https://doi.org/10.1016/j.polymer.2016.06.053Article 

Google Scholar 
Wang Y. Programmable hydrogels. Biomaterials. 2018;178:663–80. https://doi.org/10.1016/j.biomaterials.2018.03.008Article 
PubMed 
PubMed Central 

Google Scholar 
Cheng W, Wu X, Zhang Y, Wu D, Meng L, Chen Y, et al. Recent applications of hydrogels in food safety sensing: Role of hydrogels. Trends Food Sci Technol. 2022;129:244–57. https://doi.org/10.1016/j.tifs.2022.10.004Article 

Google Scholar 
Yao X, Liu J, Yang C, Yang X, Wei J, Xia Y, et al. Hydrogel paint. Adv Mater. 2019;31:1903062. https://doi.org/10.1002/adma.201903062Khajouei S, Ravan H, Ebrahimi A. DNA hydrogel-empowered biosensing. Adv Colloid Interf Sci. 2020;275:102060. https://doi.org/10.1016/j.cis.2019.102060Brumberg V, Astrelina T, Malivanova T, Samoilov A. Modern wound dressings: hydrogel dressings. Biomedicines. 2021;9:1235. https://doi.org/10.3390/biomedicines9091235Li J, Mooney DJ. Designing hydrogels for controlled drug delivery. Nat Rev Mater. 2016;1:16071. https://doi.org/10.1038/natrevmats.2016.71Guan X, Avci-Adali M, Alarcin E, Cheng H, Kashaf SS, Li Y, et al. Development of hydrogels for regenerative engineering. Biotechnol J. 2017;12:1600394. https://doi.org/10.1002/biot.201600394Yang B, Song J, Jiang Y, Li M, Wei J, Qin J, et al. Injectable adhesive self-healing multicross-linked double-network hydrogel facilitates full-thickness skin wound healing. ACS Appl Mater Interfaces. 2020;12:57782–97. https://doi.org/10.1021/acsami.0c18948Article 
PubMed 

Google Scholar 
He J, Zhang Z, Yang Y, Ren F, Li J, Zhu S, et al. Injectable self-healing adhesive ph-responsive hydrogels accelerate gastric hemostasis and wound healing. Nano-Micro Lett. 2021;13:80. https://doi.org/10.1007/s40820-020-00585-0Chen J, He J, Yang Y, Qiao L, Hu J, Zhang J, et al. Antibacterial adhesive self-healing hydrogels to promote diabetic wound healing. Acta Biomaterialia. 2022;146:119–30. https://doi.org/10.1016/j.actbio.2022.04.041Article 
PubMed 

Google Scholar 
Yang K, Zhou X, Li Z, Wang Z, Luo Y, Deng L, et al. Ultrastretchable, self-healable, and tissue-adhesive hydrogel dressings involving nanoscale tannic acid/ferric ion complexes for combating bacterial infection and promoting wound healing. ACS Appl Mater Interfaces. 2022;14:43010–25. https://doi.org/10.1021/acsami.2c13283Article 
PubMed 

Google Scholar 
Deng P, Yao L, Chen J, Tang Z, Zhou J. Chitosan-based hydrogels with injectable, self-healing and antibacterial properties for wound healing. Carbohydrate Polym. 2022;276. https://doi.org/10.1016/j.carbpol.2021.118718Liu C, Xu Z, Chandrasekaran S, Liu Y, Wu M. Self-healing, antibacterial, and conductive double network hydrogel for strain sensors. Carbohydrate Polym. 2023;303. https://doi.org/10.1016/j.carbpol.2022.120468Wang Z, Zhang X, Cao T, Wang T, Sun L, Wang K, et al. Antiliquid-interfering, antibacteria, and adhesive wearable strain sensor based on superhydrophobic and conductive composite hydrogel. ACS Appl. Mater. Interf. 2021;13:46022–32. https://doi.org/10.1021/acsami.1c15052Wu L, Li L, Pan L, Wang H, Bin Y. MWCNTs reinforced conductive, self-healing polyvinyl alcohol/carboxymethyl chitosan/oxidized sodium alginate hydrogel as the strain sensor. J Appl Polym Sci. 2021;138. https://doi.org/10.1002/app.49800Chen J, Li S, Zhang Y, Wang W, Zhang X, Zhao Y, et al. A reloadable self-healing hydrogel enabling diffusive transport of c-dots across gel-gel interface for scavenging reactive oxygen species. Adv. Healthcare Mater. 2017;1700746. https://doi.org/10.1002/adhm.201700746Zhao L, Ke T, Ling Q, Liu J, Li Z, Gu H. Multifunctional ionic conductive double-network hydrogel as a long-term flexible strain sensor. ACS Appl Polym Mater. 2021;3:5494–508. https://doi.org/10.1021/acsapm.1c00805Article 

Google Scholar 
Pan J, Jin Y, Lai S, Shi L, Fan W, Shen Y. An antibacterial hydrogel with desirable mechanical, self-healing and recyclable properties based on triple-physical crosslinking. Chem Eng J. 2019;370:1228–38. https://doi.org/10.1016/j.cej.2019.04.001Article 

Google Scholar 
Ma Y, Yao J, Liu Q, Han T, Zhao J, Ma X, et al. Liquid bandage harvests robust adhesive, hemostatic, and antibacterial performances as a first‐aid tissue adhesive. Adv Funct Mater. 2020;30. https://doi.org/10.1002/adfm.202001820Wang H, Chen X, Wen Y, Li D, Sun X, Liu Z, et al. A study on the correlation between the oxidation degree of oxidized sodium alginate on its degradability and gelation. Polymers. 2022;14:1679. https://doi.org/10.3390/polym14091679Gomez CG, Rinaudo M, Villar MA. Oxidation of sodium alginate and characterization of the oxidized derivatives. Carbohydr Polym. 2007;67:296–304. https://doi.org/10.1016/j.carbpol.2006.05.025Article 

Google Scholar 
Anjum S, Gurave P, Badiger MV, Torris A, Tiwari N, Gupta B. Design and development of trivalent aluminum ions induced self-healing polyacrylic acid novel hydrogels. Polymer. 2017;126:196–205. https://doi.org/10.1016/j.polymer.2017.08.045Article 

Google Scholar 
Klosinski KK, Wach RA, Girek-Bak MK, Rokita B, Kolat D, Kaluzinska-Kolat Z, et al. Biocompatibility and mechanical properties of carboxymethyl chitosan hydrogels. Polymers. 2022;15:144. https://doi.org/10.3390/polym15010144Cao J, Wu P, Cheng Q, He C, Chen Y, Zhou J. Ultrafast fabrication of self-healing and injectable carboxymethyl chitosan hydrogel dressing for wound healing. ACS Appl Mater Interfaces. 2021;13:24095–105. https://doi.org/10.1021/acsami.1c02089Article 
PubMed 

Google Scholar 
Zhao X, Wu H, Guo B, Dong R, Qiu Y, Ma PX. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials. 2017;122:34–47. https://doi.org/10.1016/j.biomaterials.2017.01.011Article 
PubMed 

Google Scholar 
Gupta B, Tummalapalli M, Deopura BL, Alam MS. Preparation and characterization of in-situ crosslinked pectin-gelatin hydrogels. Carbohydr Polym. 2014;106:312–8. https://doi.org/10.1016/j.carbpol.2014.02.019Article 
PubMed 

Google Scholar 
Li T, Hu X, Zhang Q, Zhao Y, Wang P, Wang X, et al. Poly(acrylic acid)-chitosan @ tannic acid double-network self-healing hydrogel based on ionic coordination. Polym Adv Technol. 2020;31:1648–60. https://doi.org/10.1002/pat.4893Article 

Google Scholar 
Wei Z, Yang JH, Liu ZQ, Xu F, Zhou JX, Zrínyi M, et al. Novel biocompatible polysaccharide-based self-healing hydrogel. Adv Funct Mater. 2015;25:1352–9. https://doi.org/10.1002/adfm.201401502Article 

Google Scholar 
Shin M, Shin S-H, Lee M, Kim HJ, Jeong JH, Choi YH, et al. Rheological criteria for distinguishing self-healing and non-self-healing hydrogels. Polymer 2021;229. https://doi.org/10.1016/j.polymer.2021.123969Bolatchiev A. Antibacterial activity of human defensins against Staphylococcus aureus and Escherichia coli. PeerJ. 2020;8. https://doi.org/10.7717/peerj.10455Marin L, Ailincai D, Mares M, Paslaru E, Cristea M, Nica V, et al. Imino-chitosan biopolymeric films. Obtaining, self-assembling, surface and antimicrobial properties. Carbohydr Polym. 2015;117:762–70. https://doi.org/10.1016/j.carbpol.2014.10.050Article 
PubMed 

Google Scholar 
Cao Z, Luo Y, Li Z, Tan L, Liu X, Li C, et al. Macromol Biosci. Macromol Biosci. 2021;21:e2000252. https://doi.org/10.1002/mabi.202000252Article 
PubMed 

Google Scholar 
Ginting M, Pasaribu SP, Masmur I, Kaban J, Hestina. Self-healing composite hydrogel with antibacterial and reversible restorability conductive properties. Rsc Adv. 2020;10:5050–7. https://doi.org/10.1039/d0ra00089bArticle 
PubMed 
PubMed Central 

Google Scholar 
Lin Z, Fan D, Li G, He L, Qin X, Zhao B, et al. Antibacterial, adhesive, and conductive hydrogel for diabetic wound healing. Macromol Biosci. 2023;23. https://doi.org/10.1002/mabi.202200349Zhao X, Wang H, Luo J, Ren G, Wang J, Chen Y, et al. Ultrastretchable, adhesive, anti-freezing, conductive, and self-healing hydrogel for wearable devices. Acs Appl Polym Mater. 2022;4:1784–93. https://doi.org/10.1021/acsapm.1c01618Article 

Google Scholar 
Min J, Zhou Z, Zheng J, Yan C, Sha H, Hong M, et al. Self-healing, water-retaining, antifreeze, conductive PVA/PAA-PAM-IS/GC composite hydrogels for strain and temperature sensors. Macromol Mater Eng. 2022;307. https://doi.org/10.1002/mame.202100948Fan X, Geng J, Wang Y, Gu H, PVA/gelatin/beta-CD-based rapid self-healing supramolecular dual-network conductive hydrogel as bidirectional strain sensor. Polymer. 2022;246. https://doi.org/10.1016/j.polymer.2022.124769Yao X, Zhang S, Qian L, Wei N, Nica V, Coseri S, et al. Super stretchable, self-healing, adhesive ionic conductive hydrogels based on tailor-made ionic liquid for high-performance strain sensors. Adv Funct Mater. 2022;32. https://doi.org/10.1002/adfm.202204565

Hot Topics

Related Articles