Regio-, stereo-, and enantioselective ipso- and migratory defluorinative olefin cross-coupling to access highly functionalized monofluoroalkenes

Meanwell, N. A. Fluorine and fluorinated motifs in the design and application of bioisosteres for drug design. J. Med. Chem. 61, 5822–5880 (2018).Article 
CAS 
PubMed 

Google Scholar 
Kumari, S., Carmona, A. V., Tiwari, A. K. & Trippier, P. C. Amide bond bioisosteres: strategies, synthesis, and successes. J. Med. Chem. 63, 12290–12358 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, C. et al. Biological utility of fluorinated compounds: from materials design to molecular imaging, therapeutics and environmental remediation. Chem. Rev. 122, 167–208 (2022).Article 
CAS 
PubMed 

Google Scholar 
Drouin, M. & Paquin, J.-F. Recent progress in the racemic and enantioselective synthesis of monofluoroalkene-based dipeptide isosteres. Beilstein J. Org. Chem. 13, 2637–2658 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Morand, S., Jubault, P., Bouillon, J.-P. & Couve-Bonnaire, S. gem-Heteroatom-substituted fluoroalkenes as mimics of amide derivatives or phosphates: a comprehensive review. Chem. – Eur. J. 27, 17273–17292 (2021).Article 
CAS 
PubMed 

Google Scholar 
Fujita, T., Fuchibe, K. & Ichikawa, J. Transition-metal-mediated and -catalyzed C–F bond activation by fluorine elimination. Angew. Chem. Int. Ed. 58, 390–402 (2019).Article 
CAS 

Google Scholar 
Wang, J. et al. Recent advances in radical-based C–F bond activation of polyfluoroarenes and gem-difluoroalkenes. Chem. Commun. 57, 12203–12217 (2021).Article 
CAS 

Google Scholar 
Ai, H.-J., Ma, X., Song, Q. & Wu, X.-F. C–F Bond activation under transition-metal-free conditions. Sci. China: Chem. 64, 1630–1659 (2021).Article 
CAS 

Google Scholar 
Lu, M.-Z. et al. Recent advances in alkenyl sp2 C–H and C–F bond functionalizations: scope, mechanism, and applications. Chem. Rev. 122, 17479–17646 (2022).Article 
CAS 
PubMed 

Google Scholar 
Ge, D. et al. Transition-metal-catalyzed asymmetric defluorinative reactions. Org. Chem. Front. 10, 3909–3928 (2023).Article 
CAS 

Google Scholar 
Tian, P., Feng, C. & Loh, T.-P. Rhodium-catalysed C(sp2)–C(sp2) bond formation via C–H/C–F activation. Nat. Commun. 6, 7472–7478 (2015).Article 
ADS 
PubMed 

Google Scholar 
Dai, W., Shi, H., Zhao, X. & Cao, S. Sterically controlled Cu-catalyzed or transition-metal-free cross-coupling of gem-difluoroalkenes with tertiary, secondary, and primary alkyl Grignard reagents. Org. Lett. 18, 4284–4287 (2016).Article 
CAS 
PubMed 

Google Scholar 
Lu, X. et al. Nickel-catalyzed defluorinative reductive cross-coupling of gem-difluoroalkenes with unactivated secondary and tertiary alkyl halides. J. Am. Chem. Soc. 139, 12632–12637 (2017).Article 
CAS 
PubMed 

Google Scholar 
Sakaguchi, H. et al. Copper-catalyzed regioselective monodefluoroborylation of polyfluoroalkenes en route to diverse fluoroalkenes. J. Am. Chem. Soc. 139, 12855–12862 (2017).Article 
CAS 
PubMed 

Google Scholar 
Yang, L. et al. Synthesis of alkylated monofluoroalkenes via Fe-catalyzed defluorinative cross-coupling of donor alkenes with gem-difluoroalkenes. Org. Lett. 20, 1924–1927 (2018).Article 
CAS 
PubMed 

Google Scholar 
Ma, Q., Wang, Y. & Tsui, G. C. Stereoselective palladium-catalyzed C–F bond alkynylation of tetrasubstituted gem-difluoroalkenes. Angew. Chem. Int. Ed. 59, 11293–11297 (2020).Article 
CAS 

Google Scholar 
Wang, K. & Kong, W. Synthesis of fluorinated compounds by nickel-catalyzed defluorinative cross-coupling reactions. ACS Catal. 13, 12238–12268 (2023).Article 
CAS 

Google Scholar 
Xu, W.-Y., Xu, Z.-Y., Zhang, Z.-K., Gong, T.-J. & Fu, Y. Tunable synthesis of monofluoroalkenes and gem-difluoroalkenes via solvent-controlled rhodium-catalyzed arylation of 1-bromo-2,2-difluoroethylene. Angew. Chem. Int. Ed. 62, e202310125 (2023).Article 
CAS 

Google Scholar 
Zhu, Z., Xiao, J. & Shi, Z. Nickel-catalyzed stereo- and enantioselective cross-coupling of gem-difluoroalkenes with carbon electrophiles by C−F bond activation. Angew. Chem. Int. Ed. 62, e202113209 (2023).
Google Scholar 
Lin, H. et al. Enantioselective Cu-catalyzed nucleophilic addition of fluorinated reagents: C–C bond formation for the synthesis of chiral vicinal difluorides. Org. Lett. 24, 2197–2202 (2022).Article 
CAS 
PubMed 

Google Scholar 
Chen, Z., Huang, X., Liao, J. & Wang, M. Copper-catalyzed enantioselective fluoroalkenylation of cyclic imino esters. Org. Chem. Front. 10, 163–168 (2023).Article 
CAS 

Google Scholar 
Crossley, S. W. M., Obradors, C., Martinez, R. M. & Shenvi, R. A. Mn-, Fe-, and Co-catalyzed radical hydrofunctionalizations of olefins. Chem. Rev. 116, 8912–9000 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liu, R. Y. & Buchwald, S. L. CuH-catalyzed olefin functionalization: from hydroamination to carbonyl addition. Acc. Chem. Res. 53, 1229–1243 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, J., Guo, J. & Lu, Z. Recent advances in hydrometallation of alkenes and alkynes via the first row transition metal catalysis. Chin. J. Chem. 36, 1075–1109 (2018).Article 
ADS 
CAS 

Google Scholar 
Wang, X.-X., Lu, X., Li, Y., Wang, J.-W. & Fu, Y. Recent advances in nickel-catalyzed reductive hydroalkylation and hydroarylation of electronically unbiased alkenes. Sci. China Chem. 63, 1586–1600 (2020).Article 
CAS 

Google Scholar 
He, Y., Chen, J., Jiang, X. & Zhu, S. Enantioselective NiH-catalyzed reductive hydrofunctionalization of alkenes. Chin. J. Chem. 40, 651–661 (2022).Article 
CAS 

Google Scholar 
Larionov, E., Li, H. & Mazet, C. Well-defined transition metal hydrides in catalytic isomerizations. Chem. Commun. 50, 9816–9826 (2014).Article 
CAS 

Google Scholar 
Vasseur, A., Bruffaerts, J. & Marek, I. Remote functionalization through alkene isomerization. Nat. Chem. 8, 209–219 (2016).Article 
CAS 
PubMed 

Google Scholar 
Sommer, H., Juliá-Hernández, F., Martin, R. & Marek, I. Walking metals for remote functionalization. ACS Cent. Sci. 4, 153–165 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, M., Ji, Y. & Zhang, C. Transition metal catalyzed enantioselective migratory functionalization reactions of alkenes through chain-walking. Chin. J. Chem. 40, 1608–1622 (2022).Article 
CAS 

Google Scholar 
Wang, Y., He, Y. & Zhu, S. NiH-catalyzed functionalization of remote and proximal olefins: new reactions and innovative strategies. Acc. Chem. Res. 55, 3519–3536 (2022).Article 
CAS 
PubMed 

Google Scholar 
Lu, X. et al. Practical carbon–carbon bond formation from olefins through nickel-catalyzed reductive olefin hydrocarbonation. Nat. Commun. 7, 11129 (2016).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
He, Y., Cai, Y. & Zhu, S. Mild and regioselective benzylic C–H functionalization: Ni-catalyzed reductive arylation of remote and proximal olefins. J. Am. Chem. Soc. 139, 1061–1064 (2017).Article 
CAS 
PubMed 

Google Scholar 
Juliá-Hernández, F., Moragas, T., Cornell, J. & Martin, R. Remote carboxylation of halogenated aliphatic hydrocarbons with carbon dioxide. Nature 545, 84–88 (2017).Article 
ADS 
PubMed 

Google Scholar 
Chen, F. et al. Remote migratory cross-electrophile coupling and olefin hydroarylation reactions enabled by in situ generation of NiH. J. Am. Chem. Soc. 139, 13929–13935 (2017).Article 
CAS 
PubMed 

Google Scholar 
Xiao, J., He, Y., Ye, F. & Zhu, S. Remote sp3 C–H amination of alkenes with nitroarenes. Chem. 4, 1645–1657 (2018).Article 
CAS 

Google Scholar 
Zhang, Y., Xu, X. & Zhu, S. Nickel-catalysed selective migratory hydrothiolation of alkenes and alkynes with thiols. Nat. Commun. 10, 1752 (2019).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Wang, Z., Yin, H. & Fu, G. C. Catalytic enantioconvergent coupling of secondary and tertiary electrophiles with olefins. Nature 563, 379–383 (2018).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhou, F., Zhang, Y., Xu, X. & Zhu, S. NiH-catalyzed remote asymmetric hydroalkylation of alkenes with racemic α-bromo amides. Angew. Chem. Int. Ed. 58, 1754–1758 (2019).Article 
CAS 

Google Scholar 
He, S.-J. et al. Nickel-catalyzed enantioconvergent reductive hydroalkylation of olefins with α-heteroatom phosphorus or sulfur alkyl electrophiles. J. Am. Chem. Soc. 142, 214–221 (2020).Article 
CAS 
PubMed 

Google Scholar 
He, Y., Liu, C., Yu, L. & Zhu, S. Enantio- and regioselective NiH-catalyzed reductive hydroarylation of vinylarenes with aryl iodides. Angew. Chem. Int. Ed. 59, 21530–21534 (2020).Article 
CAS 

Google Scholar 
Bera, S., Mao, R. & Hu, X. Enantioselective C(sp3)–C(sp3) cross-coupling of non-activated alkyl electrophiles via nickel hydride catalysis. Nat. Chem. 13, 270–277 (2021).Article 
CAS 
PubMed 

Google Scholar 
Shi, L., Xing, L.-L., Hu, W.-B. & Shu, W. Regio- and enantioselective Ni-catalyzed formal hydroalkylation, hydrobenzylation, and hydropropargylation of acrylamides to α-tertiary amides. Angew. Chem. Int. Ed. 60, 1599–1604 (2021).Article 
CAS 

Google Scholar 
Meng, L., Yang, J., Duan, M., Wang, Y. & Zhu, S. Facile synthesis of chiral arylamines, alkylamines and amides by enantioselective NiH-catalyzed hydroamination. Angew. Chem. Int. Ed. 60, 23584–23589 (2021).Article 
CAS 

Google Scholar 
Cuesta-Galisteo, S., Schörgenhumer, J., Wei, X., Merino, E. & Nevado, C. Nickel-catalyzed asymmetric synthesis of α-arylbenzamides. Angew. Chem. Int. Ed. 60, 1605–1609 (2021).Article 
CAS 

Google Scholar 
Liu, J., Gong, H. & Zhu, S. Nickel-catalyzed, regio- and enantioselective benzylic alkenylation of olefins with alkenyl bromide. Angew. Chem. Int. Ed. 60, 4060–4064 (2021).Article 
CAS 

Google Scholar 
Cheng, Y., Gui, Z., Tao, R., Wang, Y. & Zhu, S. NiH-catalyzed asymmetric hydroalkynylation of α,β-unsaturated amides. Green Synth. Catal. 3, 377–379 (2022).Article 
CAS 

Google Scholar 
Zhao, L. et al. Ligand-controlled NiH-catalyzed regiodivergent chain-walking hydroalkylation of alkenes. Angew. Chem. Int. Ed. 61, e202204716 (2022).Article 
ADS 
CAS 

Google Scholar 
Wang, J.-W. et al. Nickel-catalyzed switchable site-selective alkene hydroalkylation by temperature regulation. Angew. Chem. Int. Ed. 61, e202205537 (2022).Article 
ADS 
CAS 

Google Scholar 
Yang, J.-S. et al. NiH-catalyzed regio- and enantioselective hydroalkylation for the synthesis of β- or γ-branched chiral aromatic N-heterocycles. J. Am. Chem. Soc. 145, 22122–22134 (2023).Article 
CAS 
PubMed 

Google Scholar 
Bera, S., Fan, C. & Hu, X. Enantio- and diastereoselective construction of vicinal C(sp3) centres via nickel-catalysed hydroalkylation of alkenes. Nat. Catal. 5, 1180–1187 (2022).Article 
CAS 

Google Scholar 
Chen, J., Wu, L., Zhao, Y. & Zhu, S. Enantio- and diastereoselective NiH-catalyzed hydroalkylation of enamides or enecarbamates with racemic α-bromoamides. Angew. Chem. Int. Ed. 62, e202311094 (2023).Article 
CAS 

Google Scholar 
Lee, C., Kang, H.-J., Seo, H. & Hong, S. Nickel-catalyzed regio- and enantioselective hydroamination of unactivated alkenes using carbonyl directing groups. J. Am. Chem. Soc. 144, 9091–9100 (2022).Article 
CAS 
PubMed 

Google Scholar 
Lyu, X. et al. Intramolecular hydroamidation of alkenes enabling asymmetric synthesis of β-lactams via transposed NiH catalysis. Nat. Catal. 6, 784–795 (2023).Article 
CAS 

Google Scholar 
Bai, D. et al. Highly regio- and enantioselective hydrosilylation of gem-difluoroalkenes by nickel catalysis. Angew. Chem. Int. Ed. 61, e202114918 (2022).Article 
CAS 

Google Scholar 
Chen, F., Xu, X., He, Y., Huang, G. & Zhu, S. NiH-catalyzed migratory defluorinative cross olefin-coupling: trifluoromethyl-substituted alkenes as acceptor olefins to form gem-difluoroalkenes. Angew. Chem. Int. Ed. 59, 5398–5402 (2020).Article 
CAS 

Google Scholar 
Zhou, L., Zhu, C., Bi, P. & Feng, C. Ni-catalyzed migratory fluoro-alkenylation of unactivated alkyl bromides with gem-difluoroalkenes. Chem. Sci. 10, 1144–1149 (2019).Article 
CAS 
PubMed 

Google Scholar 
Chen, M. S., Prabagaran, N., Labenz, N. A. & White, M. C. Serial ligand catalysis:  a highly selective allylic C−H oxidation. J. Am. Chem. Soc. 127, 6970–6971 (2005).Article 
CAS 
PubMed 

Google Scholar 
Fors, B. P. & Buchwald, S. L. A multiligand based Pd catalyst for C−N cross-coupling reactions. J. Am. Chem. Soc. 132, 15914–15917 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, C., Peters, J. C. & Fu, G. C. Photoinduced copper-catalysed asymmetric amidation via ligand cooperativity. Nature 596, 250–256 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kim-Lee, S.-H., Mauleón, P., Arrayás, R. G. & Carretero, J. C. Dynamic multiligand catalysis: a polar to radical crossover strategy expands alkyne carboboration to unactivated secondary alkyl halides. Chem 7, 2212–2226 (2021).Article 
CAS 

Google Scholar 
Zhang, Y. et al. A relay catalysis strategy for enantioselective nickel-catalyzed migratory hydroarylation forming chiral α-aryl alkylboronates. Chem 7, 3171–3188 (2021).Article 
MathSciNet 
CAS 

Google Scholar 
He, Y. et al. Regio- and enantioselective remote hydroarylation using a ligand-relay strategy. Nat. Commun. 13, 2471 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jiang, X., Sheng, F.-T., Zhang, Y. & Zhu, S. Ligand relay catalysis enables asymmetric migratory reductive acylation of olefins or alkyl halides. J. Am. Chem. Soc. 144, 21448–21456 (2022).Article 
CAS 
PubMed 

Google Scholar 
Zhou, J., He, Y., Liu, Z., Wang, Y. & Zhu, S. Ligand relay catalysis enables asymmetric migratory hydroarylation for the concise synthesis of chiral α-(hetero)aryl-substituted amines. Adv. Sci. 11, 2306447 (2024).Article 
CAS 

Google Scholar 
Sun, Y., Guo, J., Shen, X. & Lu, Z. Ligand relay catalysis for cobalt-catalyzed sequential hydrosilylation and hydrohydrazidation of terminal alkynes. Nat. Commun. 13, 650 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sun, Y., Wang, B. & Lu, Z. Ligand relay catalysis: a newly emerged synthetic strategy. Org. Chem. Front. 10, 4146–4160 (2023).Article 
CAS 

Google Scholar 
Lu, G. et al. Ligand-substrate dispersion facilitates the copper-catalyzed hydroamination of unactivated olefins. J. Am. Chem. Soc. 139, 16548–16555 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles