Classification of osteoarthritic and healthy cartilage using deep learning with Raman spectra

Vašková, H. A powerful tool for material identification: Raman spectroscopy. Int. J. Math. Model. Methods Appl. Sci. 5, 1205–1212 (2011).Gautam, R., Vanga, S., Ariese, F. & Umapathy, S. Review of multidimensional data processing approaches for Raman and infrared spectroscopy. EPJ Tech. Instrum. 2, 1–38 (2015).Article 
CAS 

Google Scholar 
Mostafapour, S. et al. Investigating the effect of different pre-treatment methods on Raman spectra recorded with different excitation wavelengths. Spectrochim. Acta Part A 302, 123100 (2023).Article 
CAS 

Google Scholar 
Afseth, N. K., Segtnan, V. H. & Wold, J. P. Raman spectra of biological samples: A study of preprocessing methods. Appl. Spectrosc. 60, 1358–1367 (2006).Article 
CAS 
PubMed 

Google Scholar 
Heraud, P., Wood, B. R., Beardall, J. & McNaughton, D. Effects of pre-processing of Raman spectra on in vivo classification of nutrient status of microalgal cells. J. Chemom. 20, 193–197 (2006).Article 
CAS 

Google Scholar 
Engel, J. et al. Breaking with trends in pre-processing?. TrAC Trends Anal. Chem. 50, 96–106 (2013).Article 
CAS 

Google Scholar 
Pan, L., Zhang, P., Daengngam, C., Peng, S. & Chongcheawchamnan, M. A review of artificial intelligence methods combined with Raman spectroscopy to identify the composition of substances. J. Raman Spectrosc. 53, 6–19 (2022).Article 
CAS 

Google Scholar 
Krafft, C., Steiner, G., Beleites, C. & Salzer, R. Disease recognition by infrared and Raman spectroscopy. J. Biophoton. 2, 13–28 (2009).Article 
CAS 

Google Scholar 
Liu, J. et al. Deep convolutional neural networks for Raman spectrum recognition: A unified solution. Analyst 142, 4067–4074 (2017).Article 
CAS 
PubMed 

Google Scholar 
Acquarelli, J. et al. Convolutional neural networks for vibrational spectroscopic data analysis. Anal. Chim. Acta 954, 22–31 (2017).Article 
CAS 
PubMed 

Google Scholar 
Zhang, X., Lin, T., Xu, J., Luo, X. & Ying, Y. Deepspectra: An end-to-end deep learning approach for quantitative spectral analysis. Anal. Chim. Acta 1058, 48–57 (2019).Article 
CAS 
PubMed 

Google Scholar 
Wahl, J., Sjödahl, M. & Ramser, K. Single-step preprocessing of Raman spectra using convolutional neural networks. Appl. Spectrosc. 74, 427–438 (2020).Article 
CAS 
PubMed 

Google Scholar 
Kazemzadeh, M. et al. Cascaded deep convolutional neural networks as improved methods of preprocessing Raman spectroscopy data. Anal. Chem. 94, 12907–12918 (2022).Article 
CAS 
PubMed 

Google Scholar 
Kumar, R. et al. Optical investigation of osteoarthritic human cartilage (icrs grade) by confocal Raman spectroscopy: A pilot study. Anal. Bioanal. Chem. 407, 8067–8077 (2015).Article 
CAS 
PubMed 

Google Scholar 
Richardson, W. et al. Ensemble multivariate analysis to improve identification of articular cartilage disease in noisy Raman spectra. J. Biophoton. 8, 555–566 (2015).Article 

Google Scholar 
Shaikh, R. et al. Raman spectroscopy is sensitive to biochemical changes related to various cartilage injuries. J. Raman Spectrosc. 52, 796–804 (2021).Article 
CAS 

Google Scholar 
Afara, I. O. et al. Machine learning classification of articular cartilage integrity using near infrared spectroscopy. Cell. Mol. Bioeng. 13, 219–228 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liu, Y. et al. Convolutional neural network for hyperspectral data analysis and effective wavelengths selection. Anal. Chim. Acta 1086, 46–54 (2019).Article 
CAS 
PubMed 

Google Scholar 
Fukuhara, M., Fujiwara, K., Maruyama, Y. & Itoh, H. Feature visualization of Raman spectrum analysis with deep convolutional neural network. Anal. Chim. Acta 1087, 11–19 (2019).Article 
CAS 
PubMed 

Google Scholar 
Zhang, X. et al. Understanding the learning mechanism of convolutional neural networks in spectral analysis. Anal. Chim. Acta 1119, 41–51 (2020).Article 
CAS 
PubMed 

Google Scholar 
Xia, J., Zhang, J., Xiong, Y. & Min, S. Feature selection of infrared spectra analysis with convolutional neural network. Spectrochim. Acta Part A 266, 120361 (2022).Article 
CAS 

Google Scholar 
Crisford, A. et al. Harnessing Raman spectroscopy and multimodal imaging of cartilage for osteoarthritis diagnosis. medRxiv (2023).Ho, C.-S. et al. Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning. Nat. Commun. 10, 1–8 (2019).Article 

Google Scholar 
He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 770–778 (2016).Sundararajan, M., Taly, A. & Yan, Q. Axiomatic attribution for deep networks. In International Conference on Machine Learning 3319–3328 (PMLR, 2017).Huang, W., Zhao, X., Jin, G. & Huang, X. Safari: Versatile and efficient evaluations for robustness of interpretability. arXiv preprint arXiv:2208.09418 (2022).Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).MathSciNet 

Google Scholar 
Mandair, G. S. & Morris, M. D. Contributions of Raman spectroscopy to the understanding of bone strength. BoneKEy Rep. 4, 620 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Movasaghi, Z., Rehman, S. & Rehman, I. U. Raman spectroscopy of biological tissues. Appl. Spectrosc. Rev. 42, 493–541 (2007).Article 
CAS 

Google Scholar 
Casal-Beiroa, P. et al. Optical biomarkers for the diagnosis of osteoarthritis through Raman spectroscopy: Radiological and biochemical validation using ex vivo human cartilage samples. Diagnostics 11, 546 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mansfield, J. C. & Winlove, C. P. Lipid distribution, composition and uptake in bovine articular cartilage studied using Raman micro-spectrometry and confocal microscopy. J. Anat. 231, 156–166 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
de Souza, R. A. et al. Raman spectroscopy detection of molecular changes associated with two experimental models of osteoarthritis in rats. Lasers Med. Sci. 29, 797–804 (2014).Article 
PubMed 

Google Scholar 
Gao, T. et al. Non-destructive spatial mapping of glycosaminoglycan loss in native and degraded articular cartilage using confocal raman microspectroscopy. Front. Bioeng. Biotechnol. 9, 744197 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Pezzotti, G. et al. Raman spectroscopic insight into osteoarthritic cartilage regeneration by mrna therapeutics encoding cartilage-anabolic transcription factor runx1. Mater. Today Bio 13, 100210 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Takahashi, Y. et al. Raman spectroscopy investigation of load-assisted microstructural alterations in human knee cartilage: Preliminary study into diagnostic potential for osteoarthritis. J. Mech. Behav. Biomed. Mater. 31, 77–85 (2014).Article 
PubMed 

Google Scholar 
Martinez, M. G., Bullock, A. J., MacNeil, S. & Rehman, I. U. Characterisation of structural changes in collagen with Raman spectroscopy. Appl. Spectrosc. Rev. 54, 509–542 (2019).Article 
CAS 

Google Scholar 
Chatzipanagis, K. et al. In situ mechanical and molecular investigations of collagen/apatite biomimetic composites combining Raman spectroscopy and stress-strain analysis. Acta Biomater. 46, 278–285 (2016).Article 
CAS 
PubMed 

Google Scholar 
Zhang, F. et al. Baseline correction for infrared spectra using adaptive smoothness parameter penalized least squares method. Spectrosc. Lett. 53, 222–233 (2020).Article 
CAS 

Google Scholar 
Eilers, P. H. & Marx, B. D. Splines, knots, and penalties. Wiley Interdiscip. Rev. 2, 637–653 (2010).Article 

Google Scholar 
Liu, H. et al. Joint baseline-correction and denoising for Raman spectra. Appl. Spectrosc. 69, 1013–1022 (2015).Article 
CAS 
PubMed 

Google Scholar 
Krishna, H., Majumder, S. K. & Gupta, P. K. Range-independent background subtraction algorithm for recovery of Raman spectra of biological tissue. J. Raman Spectrosc. 43, 1884–1894 (2012).Article 
CAS 

Google Scholar 
Cobas, J. C., Bernstein, M. A., Martín-Pastor, M. & Tahoces, P. G. A new general-purpose fully automatic baseline-correction procedure for 1d and 2d nmr data. J. Magn. Reson. 183, 145–151 (2006).Article 
CAS 
PubMed 

Google Scholar 
Cao, A. et al. A robust method for automated background subtraction of tissue fluorescence. J. Raman Spectrosc. 38, 1199–1205 (2007).Article 
CAS 

Google Scholar 
Liu, J., Sun, J., Huang, X., Li, G. & Liu, B. Goldindec: A novel algorithm for Raman spectrum baseline correction. Appl. Spectrosc. 69, 834–842 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ning, X., Selesnick, I. W. & Duval, L. Chromatogram baseline estimation and denoising using sparsity (beads). Chemom. Intell. Lab. Syst. 139, 156–167 (2014).Article 
CAS 

Google Scholar 
Navarro-Huerta, J., Torres-Lapasió, J., López-Ureña, S. & García-Alvarez-Coque, M. Assisted baseline subtraction in complex chromatograms using the beads algorithm. J. Chromatogr. A 1507, 1–10 (2017).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles