Chemoproteomic profiling unveils binding and functional diversity of endogenous proteins that interact with endogenous triplex DNA

Frank-Kamenetskii, M. D. & Mirkin, S. M. Triplex DNA structures. Annu. Rev. Biochem. 64, 65–95 (1995).Article 
CAS 
PubMed 

Google Scholar 
Schroth, G. P. & Ho, P. S. Occurrence of potential cruciform and H-DNA forming sequences in genomic DNA. Nucleic Acids Res. 23, 1977–1983 (1995).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ohno, M., Fukagawa, T., Lee, J. S. & Ikemura, T. Triplex-forming DNAs in the human interphase nucleus visualized in situ by polypurine/polypyrimidine DNA probes and antitriplex antibodies. Chromosoma 111, 201–213 (2002).Article 
CAS 
PubMed 

Google Scholar 
Kouzine, F. et al. Permanganate/S1 nuclease footprinting reveals non-B DNA structures with regulatory potential across a mammalian genome. Cell Syst. 4, 344–356 e347 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Maekawa, K., Yamada, S., Sharma, R., Chaudhuri, J. & Keeney, S. Triple-helix potential of the mouse genome. Proc. Natl Acad. Sci. USA 119, e2203967119 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Matos-Rodrigues, G. et al. S1-END-seq reveals DNA secondary structures in human cells. Mol Cell 82, 3538–3552 e3535 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Firulli, A. B., Maibenco, D. C. & Kinniburgh, A. J. Triplex forming ability of a c-myc promoter element predicts promoter strength. Arch. Biochem. Biophys. 310, 236–242 (1994).Article 
CAS 
PubMed 

Google Scholar 
Pandey, S. et al. Transcription blockage by stable H-DNA analogs in vitro. Nucleic Acids Res. 43, 6994–7004 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Khristich, A. N., Armenia, J. F., Matera, R. M., Kolchinski, A. A. & Mirkin, S. M. Large-scale contractions of Friedreich’s ataxia GAA repeats in yeast occur during DNA replication due to their triplex-forming ability. Proc. Natl Acad. Sci. USA 117, 1628–1637 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, G. & Vasquez, K. M. Naturally occurring H-DNA-forming sequences are mutagenic in mammalian cells. Proc. Natl Acad. Sci. USA 101, 13448–13453 (2004).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Carbone, G. M. et al. Triplex DNA-mediated downregulation of Ets2 expression results in growth inhibition and apoptosis in human prostate cancer cells. Nucleic Acids Res. 32, 4358–4367 (2004).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cooney, M., Czernuszewicz, G., Postel, E. H., Flint, S. J. & Hogan, M. E. Site-specific oligonucleotide binding represses transcription of the human c-myc gene in vitro. Science 241, 456–459 (1988).Article 
CAS 
PubMed 

Google Scholar 
Vasquez, K. M., Narayanan, L. & Glazer, P. M. Specific mutations induced by triplex-forming oligonucleotides in mice. Science 290, 530–533 (2000).Article 
CAS 
PubMed 

Google Scholar 
Kalish, J. M., Seidman, M. M., Weeks, D. L. & Glazer, P. M. Triplex-induced recombination and repair in the pyrimidine motif. Nucleic Acids Res. 33, 3492–3502 (2005).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kaushik Tiwari, M. & Rogers, F. A. XPD-dependent activation of apoptosis in response to triplex-induced DNA damage. Nucleic Acids Res. 41, 8979–8994 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hennessy, J. et al. A click chemistry approach to targeted DNA crosslinking with cis-platinum(II)-modified triplex-forming oligonucleotides. Angew. Chem. Int. Ed. Engl. 61, e202110455 (2022).Article 
CAS 
PubMed 

Google Scholar 
Kaushik Tiwari, M. et al. Direct targeting of amplified gene loci for proapoptotic anticancer therapy. Nat. Biotechnol. 40, 325–334 (2022).Article 
CAS 
PubMed 

Google Scholar 
Jain, A., Wang, G. & Vasquez, K. M. DNA triple helices: biological consequences and therapeutic potential. Biochimie 90, 1117–1130 (2008).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kiyama, R. & Camerini-Otero, R. D. A triplex DNA-binding protein from human cells: purification and characterization. Proc. Natl Acad. Sci. USA 88, 10450–10454 (1991).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Guieysse, A. L., Praseuth, D. & Helene, C. Identification of a triplex DNA-binding protein from human cells. J. Mol. Biol. 267, 289–298 (1997).Article 
CAS 
PubMed 

Google Scholar 
Musso, M., Nelson, L. D. & Van Dyke, M. W. Characterization of purine-motif triplex DNA-binding proteins in HeLa extracts. Biochemistry 37, 3086–3095 (1998).Article 
CAS 
PubMed 

Google Scholar 
Ciotti, P., Van Dyke, M. W., Bianchi-Scarra, G. & Musso, M. Characterization of a triplex DNA-binding protein encoded by an alternative reading frame of loricrin. Eur. J. Biochem. 268, 225–234 (2001).Article 
CAS 
PubMed 

Google Scholar 
Guillonneau, F., Guieysse, A. L., Le Caer, J. P., Rossier, J. & Praseuth, D. Selection and identification of proteins bound to DNA triple-helical structures by combination of 2D-electrophoresis and MALDI-TOF mass spectrometry. Nucleic Acids Res. 29, 2427–2436 (2001).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Nelson, L. D. et al. Triplex DNA-binding proteins are associated with clinical outcomes revealed by proteomic measurements in patients with colorectal cancer. Mol Cancer 11, 38 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ji, X. et al. Chromatin proteomic profiling reveals novel proteins associated with histone-marked genomic regions. Proc. Natl Acad. Sci. USA 112, 3841–3846 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Agazie, Y. M., Lee, J. S. & Burkholder, G. D. Characterization of a new monoclonal antibody to triplex DNA and immunofluorescent staining of mammalian chromosomes. J. Biol. Chem. 269, 7019–7023 (1994).Article 
CAS 
PubMed 

Google Scholar 
Brosh, R. M. Jr. et al. Unwinding of a DNA triple helix by the Werner and Bloom syndrome helicases. J. Biol. Chem. 276, 3024–3030 (2001).Article 
CAS 
PubMed 

Google Scholar 
Guo, M. et al. A distinct triplex DNA unwinding activity of ChlR1 helicase. J. Biol. Chem. 290, 5174–5189 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jain, A. et al. DHX9 helicase is involved in preventing genomic instability induced by alternatively structured DNA in human cells. Nucleic Acids Res. 41, 10345–10357 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wu, Y. et al. Human replication protein A melts a DNA triple helix structure in a potent and specific manner. Biochemistry 47, 5068–5077 (2008).Article 
CAS 
PubMed 

Google Scholar 
Li, G., Tolstonog, G. V. & Traub, P. Interaction in vitro of type III intermediate filament proteins with triplex DNA. DNA Cell Biol 21, 163–188 (2002).Article 
PubMed 

Google Scholar 
Kusic, J., Tomic, B., Divac, A. & Kojic, S. Human initiation protein Orc4 prefers triple stranded DNA. Mol. Biol. Rep. 37, 2317–2322 (2010).Article 
CAS 
PubMed 

Google Scholar 
Brazdova, M. et al. p53 specifically binds triplex DNA in vitro and in cells. PLoS ONE 11, e0167439 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Jain, A., Akanchha, S. & Rajeswari, M. R. Stabilization of purine motif DNA triplex by a tetrapeptide from the binding domain of HMGBI protein. Biochimie 87, 781–790 (2005).Article 
CAS 
PubMed 

Google Scholar 
Zhao, J. et al. Distinct mechanisms of nuclease-directed DNA-structure-induced genetic instability in cancer genomes. Cell Rep. 22, 1200–1210 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jain, A., Bacolla, A., Chakraborty, P., Grosse, F. & Vasquez, K. M. Human DHX9 helicase unwinds triple-helical DNA structures. Biochemistry 49, 6992–6999 (2010).Article 
CAS 
PubMed 

Google Scholar 
Zhang, X., Spiegel, J., Martinez Cuesta, S., Adhikari, S. & Balasubramanian, S. Chemical profiling of DNA G-quadruplex-interacting proteins in live cells. Nat. Chem. 13, 626–633 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Arya, D. P. New approaches toward recognition of nucleic acid triple helices. Acc. Chem. Res. 44, 134–146 (2011).Article 
CAS 
PubMed 

Google Scholar 
Jain, A. K. & Bhattacharya, S. Groove binding ligands for the interaction with parallel-stranded ps-duplex DNA and triplex DNA. Bioconjug. Chem. 21, 1389–1403 (2010).Article 
CAS 
PubMed 

Google Scholar 
Escude, C. et al. Rational design of a triple helix-specific intercalating ligand. Proc. Natl Acad. Sci. USA 95, 3591–3596 (1998).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Amiri, H. et al. Benzoquinoquinoxaline derivatives stabilize and cleave H-DNA and repress transcription downstream of a triplex-forming sequence. J. Mol. Biol. 351, 776–783 (2005).Article 
CAS 
PubMed 

Google Scholar 
Arya, D. P., Xue, L. & Tennant, P. Combining the best in triplex recognition: synthesis and nucleic acid binding of a BQQ–neomycin conjugate. J. Am. Chem. Soc. 125, 8070–8071 (2003).Article 
CAS 
PubMed 

Google Scholar 
Ranjan, N., Andreasen, K. F., Arora, Y., Xue, L. & Arya, D. P. Surface dependent dual recognition of a G-quadruplex DNA with neomycin–intercalator conjugates. Front. Chem. 8, 60 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zain, R. et al. Design of a triple-helix-specific cleaving reagent. Chem.Biol. 6, 771–777 (1999).Article 
CAS 
PubMed 

Google Scholar 
Hatanaka, Y. & Sadakane, Y. Photoaffinity labeling in drug discovery and developments: chemical gateway for entering proteomic frontier. Curr. Top. Med. Chem. 2, 271–288 (2002).Article 
CAS 
PubMed 

Google Scholar 
Geri, J. B. et al. Microenvironment mapping via Dexter energy transfer on immune cells. Science 367, 1091–1097 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, G. & Vasquez, K. M. Dynamic alternative DNA structures in biology and disease. Nat. Rev. Genet. https://doi.org/10.1038/s41576-022-00539-9 (2022).Article 
PubMed 

Google Scholar 
Buske, F. A., Mattick, J. S. & Bailey, T. L. Potential in vivo roles of nucleic acid triple-helices. RNA Biol. 8, 427–439 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rastokina, A. et al. Large-scale expansions of Friedreich’s ataxia GAA*TTC repeats in an experimental human system: role of DNA replication and prevention by LNA-DNA oligonucleotides and PNA oligomers. Nucleic Acids Res. 51, 8532–8549 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bai, G. et al. HLTF prevents G4 accumulation and promotes G4-induced fork slowing to maintain genome stability. Preprint at bioRxiv https://doi.org/10.1101/2023.10.27.563641 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Van Nostrand, E. L. et al. A large-scale binding and functional map of human RNA-binding proteins. Nature 583, 711–719 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Hirling, H., Scheffner, M., Restle, T. & Stahl, H. RNA helicase activity associated with the human p68 protein. Nature 339, 562–564 (1989).Article 
CAS 
PubMed 

Google Scholar 
Oppikofer, M. et al. Expansion of the ISWI chromatin remodeler family with new active complexes. EMBO Rep. 18, 1697–1706 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Szlachta, K. et al. Topoisomerase II contributes to DNA secondary structure-mediated double-stranded breaks. Nucleic Acids Res. 48, 6654–6671 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ha, K. et al. Rapid and transient recruitment of DNMT1 to DNA double-strand breaks is mediated by its interaction with multiple components of the DNA damage response machinery. Hum. Mol. Genet. 20, 126–140 (2011).Article 
CAS 
PubMed 

Google Scholar 
Salton, M., Lerenthal, Y., Wang, S. Y., Chen, D. J. & Shiloh, Y. Involvement of Matrin 3 and SFPQ/NONO in the DNA damage response. Cell Cycle 9, 1568–1576 (2010).Article 
CAS 
PubMed 

Google Scholar 
van Wietmarschen, N. et al. Repeat expansions confer WRN dependence in microsatellite-unstable cancers. Nature 586, 292–298 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Garbelli, A., Beermann, S., Di Cicco, G., Dietrich, U. & Maga, G. A motif unique to the human DEAD-box protein DDX3 is important for nucleic acid binding, ATP hydrolysis, RNA/DNA unwinding and HIV-1 replication. PLoS One 6, e19810 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, Y., Syed, J. & Sugiyama, H. RNA-DNA triplex formation by long noncoding RNAs. Cell Chem Biol 23, 1325–1333 (2016).Article 
CAS 
PubMed 

Google Scholar 
Devi, G., Zhou, Y., Zhong, Z., Toh, D. F. & Chen, G. RNA triplexes: from structural principles to biological and biotech applications. Wiley Interdiscip. Rev. RNA 6, 111–128 (2015).Article 
CAS 
PubMed 

Google Scholar 
Shan, L. et al. Nucleolar URB1 ensures 3′ ETS rRNA removal to prevent exosome surveillance. Nature 615, 526–534 (2023).Article 
CAS 
PubMed 

Google Scholar 
Heerma van Voss, M. R. et al. Nuclear DDX3 expression predicts poor outcome in colorectal and breast cancer. Onco Targets Ther. 10, 3501–3513 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Gao, B. et al. Remodeling the conformational dynamics of I-motif DNA by helicases in ATP-independent mode at acidic environment. iScience 25, 103575 (2022).Article 
CAS 
PubMed 

Google Scholar 
Chatterjee, S. et al. Mechanistic insight into the interaction of BLM helicase with intra-strand G-quadruplex structures. Nat. Commun. 5, 5556 (2014).Article 
CAS 
PubMed 

Google Scholar 
Liu, F., Putnam, A. & Jankowsky, E. ATP hydrolysis is required for DEAD-box protein recycling but not for duplex unwinding. Proc. Natl Acad. Sci. USA 105, 20209–20214 (2008).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yang, Q., Del Campo, M., Lambowitz, A. M. & Jankowsky, E. DEAD-box proteins unwind duplexes by local strand separation. Mol. Cell 28, 253–263 (2007).Article 
CAS 
PubMed 

Google Scholar 
Yang, Q. & Jankowsky, E. The DEAD-box protein Ded1 unwinds RNA duplexes by a mode distinct from translocating helicases. Nat. Struct. Mol. Biol. 13, 981–986 (2006).Article 
CAS 
PubMed 

Google Scholar 
Gagnon, K. T., Li, L., Janowski, B. A. & Corey, D. R. Analysis of nuclear RNA interference in human cells by subcellular fractionation and Argonaute loading. Nat. Protoc. 9, 2045–2060 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Maldonado, R., Schwartz, U., Silberhorn, E. & Langst, G. Nucleosomes stabilize ssRNA–dsDNA triple helices in human cells. Mol. Cell 73, 1243–1254 e1246 (2019).Article 
CAS 
PubMed 

Google Scholar 
Nguyen, H. D. et al. Functions of replication protein A as a sensor of R loops and a regulator of RNaseH1. Mol. Cell 65, 832–847 e834 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Niu, K. et al. Identification of LARK as a novel and conserved G-quadruplex binding protein in invertebrates and vertebrates. Nucleic Acids Res. 47, 7306–7320 (2019).CAS 
PubMed 
PubMed Central 

Google Scholar 
Wu, Y., Sommers, J. A., Suhasini, A. N., Aggarwal, M. & Brosh, R. M. Molecular analyses of DNA helicases involved in the replicational stress response. Methods 51, 303–312 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tarasov, A., Vilella, A. J., Cuppen, E., Nijman, I. J. & Prins, P. Sambamba: fast processing of NGS alignment formats. Bioinformatics 31, 2032–2034 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ramirez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, Y. et al. Model-based analysis of ChIP-seq (MACS). Genome Biol. 9, R137 (2008).Article 
PubMed 
PubMed Central 

Google Scholar 
Machanick, P. & Bailey, T. L. MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics 27, 1696–1697 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ou, J., Wolfe, S. A., Brodsky, M. H. & Zhu, L. J. motifStack for the analysis of transcription factor binding site evolution. Nat. Methods 15, 8–9 (2018).Article 
CAS 
PubMed 

Google Scholar 
Kaya-Okur, H. S., Janssens, D. H., Henikoff, J. G., Ahmad, K. & Henikoff, S. Efficient low-cost chromatin profiling with CUT&Tag. Nat. Protoc. 15, 3264–3283 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).Article 
PubMed 
PubMed Central 

Google Scholar 
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles