Conformational control over proton-coupled electron transfer in metalloenzymes

Mitchell, P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191, 144–148 (1961).Article 
CAS 
PubMed 

Google Scholar 
Warren, J. J., Tronic, T. A. & Mayer, J. M. Thermochemistry of proton-coupled electron transfer reagents and its implications. Chem. Rev. 110, 6961–7001 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Marcus, R. A. & Sutin, N. Electron transfers in chemistry and biology. BBA Rev. Bioenerg. 811, 265–322 (1985).CAS 

Google Scholar 
Reece, S. Y. & Nocera, D. G. Proton-coupled electron transfer in biology: results from synergistic studies in natural and model systems. Annu. Rev. Biochem. 78, 673–699 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Soudackov, A. & Hammes-Schiffer, S. Derivation of rate expressions for nonadiabatic proton-coupled electron transfer reactions in solution. J. Chem. Phys. 113, 2385–2396 (2000).Article 
CAS 

Google Scholar 
Jencks, B. W. P. Binding energy, specificity, and enzymatic catalysis: the Circe effect. Adv. Enzym. 43, 220–410 (1975). The question of how enzymes accelerate reaction rates remains debated. This seminal work outlines key contributions to catalysis and provides experimental insights regarding the relative impacts of these different contributions. The term ‘Circe effect’ is coined to describe the way that enzymes use conformational changes to regulate activity.
Google Scholar 
Lumry, R. & Eyring, H. Conformation changes of proteins. J. Phys. Chem. 58, 110–120 (1954).Article 
CAS 

Google Scholar 
Pratt, J. M. Metalloenzymes as molecular switches: the role of conformation changes in controlling activity. J. Inorg. Biochem. 28, 145–153 (1986).Article 
CAS 
PubMed 

Google Scholar 
Hammes-Schiffer, S. & Stuchebrukhov, A. A. Theory of coupled electron and proton transfer reactions. Chem. Rev. 110, 6939–6960 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Migliore, A., Polizzi, N. F., Therien, M. J. & Beratan, D. N. Biochemistry and theory of proton-coupled electron transfer. Chem. Rev. 114, 3381–3465 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rutledge, H. L. & Tezcan, F. A. Electron transfer in nitrogenase. Chem. Rev. 120, 5158–5193 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Burgess, B. K. & Lowe, D. J. Mechanism of molybdenum nitrogenase. Chem. Rev. 96, 2983–3012 (1996).Article 
CAS 
PubMed 

Google Scholar 
Hageman, R. V. & Burris, R. H. Nitrogenase and nitrogenase reductase associate and dissociate with each catalytic cycle. Proc. Natl Acad. Sci. USA 75, 2699–2702 (1978).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Garner, C. D. & Bristow, S. in Molybdenum Enzymes Vol. 7 (ed. Spiro T. G.) (Wiley, 1985).Lowe, D. J. & Thorneley, R. N. The mechanism of Klebsiella pneumoniae nitrogenase action. Pre-steady-state kinetics of H2 formation. Biochem. J. 224, 877–886 (1984).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lowe, D. J. & Thorneley, R. N. F. The mechanism of Klebsiella pneumoniae nitrogenase action. The determination of rate constants required for the simulation of the kinetics of N2 reduction and H2 evolution. Biochem. J. 224, 895–901 (1984).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tezcan, F. A. et al. Nitrogenase complexes: multiple docking sites for a nucleotide switch protein. Science 309, 1377–1380 (2005).Article 
CAS 
PubMed 

Google Scholar 
Schindelin, H., Kisker, C., Schlessman, J. L., Howard, J. B. & Rees, D. C. Structure of ADP·AlF4−-stabilized nitrogenase complex and its implications for signal transduction. Nature 387, 370–376 (1997).Article 
CAS 
PubMed 

Google Scholar 
Schmid, B. et al. Biochemical and structural characterization of the cross-linked complex of nitrogenase: comparison to the ADP-AlF4−-stabilized structure. Biochemistry 41, 15557–15565 (2002).Article 
CAS 
PubMed 

Google Scholar 
Chiu, H.-J. et al. MgATP-bound and nucleotide-free structures of a nitrogenase protein complex between the Leu 127Δ-Fe-protein and the MoFe-protein. Biochemistry 40, 641–650 (2001).Article 
CAS 
PubMed 

Google Scholar 
Owens, C. P., Katz, F. E. H., Carter, C. H., Luca, M. A. & Tezcan, F. A. Evidence for functionally relevant encounter complexes in nitrogenase catalysis. J. Am. Chem. Soc. 137, 12704–12712 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Davidson, V. L. Protein control of true, gated, and coupled electron transfer reactions. Acc. Chem. Res. 41, 730–738 (2008).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Danyal, K., Mayweather, D., Dean, D. R., Seefeldt, L. C. & Hoffman, B. M. Conformational gating of electron transfer from the nitrogenase Fe protein to MoFe protein. J. Am. Chem. Soc. 132, 6894–6895 (2010). This paper examines the rate of electron injection as a function of viscosity and osmolality, illuminating the nature of rate-limiting conformational changes in nitrogenase.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Urbauer, J. L., Dorgan, L. J. & Schuster, S. M. Effects of deuterium on the kinetics of beef heart mitochondrial ATPase. Arch. Biochem. Biophys. 231, 498–502 (1984).Article 
CAS 
PubMed 

Google Scholar 
Jeuken, L. J. C. Conformational reorganisation in interfacial protein electron transfer. Biochim. Biophys. Acta Bioenerg. 1604, 67–76 (2003).Article 
CAS 

Google Scholar 
Liang, Z.-X. et al. Dynamic docking and electron transfer between Zn-myoglobin and cytochrome b5. J. Am. Chem. Soc. 124, 6849–6859 (2002).Article 
CAS 
PubMed 

Google Scholar 
Hazzard, J. T., Moench, S. J., Erman, J. E., Satterlee, J. D. & Tollin, G. Kinetics of intracomplex electron transfer and of reduction of the components of covalent and noncovalent complexes of cytochrome c and cytochrome c peroxidase by free flavin semiquinones. Biochemistry 27, 2002–2008 (1988).Article 
CAS 
PubMed 

Google Scholar 
Rutledge, H. L., Cook, B. D., Nguyen, H. P. M., Herzik, M. A. & Tezcan, F. A. Structures of the nitrogenase complex prepared under catalytic turnover conditions. Science 377, 865–869 (2022). In this paper, the catalytically active superstructure of nitrogenase is revealed by cryoEM, providing structural evidence for numerous conformational changes and the choreography of the dynamic protein–protein interactions that trigger them.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ashby, G. A. & Thorneley, R. N. F. Nitrogenase of Klebsiella pneumoniae. Kinetic studies on the Fe protein involving reduction by sodium dithionite, the binding of MgADP and a conformation change that alters the reactivity of the 4Fe-4S centre. Biochem. J. 246, 455–465 (1987).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Levitzki, A. & Koshland, D. E. Current Topics in Cellular Regulation Vol. 10 (eds. Horecker, B. L. & Stdtman, E. R.) 1–40 (Academic, 1976).Nguyen, R. C., Stagliano, C. & Liu, A. Structural insights into the half-of-sites reactivity in homodimeric and homotetrameric metalloenzymes. Curr. Opin Chem. Biol. 75, 102332 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Howard, J. B. & Rees, D. C. Nitrogenase: a nucleotide-dependent molecular switch. Annu. Rev. Biochem. 63, 235–264 (1994).Article 
CAS 
PubMed 

Google Scholar 
Weston, M. F., Kotake, S. & Davis, L. C. Interaction of nitrogenase with nucleotide analogs of ATP and ADP and the effect of metal ions on ADP inhibition. Arch. Biochem. Biophys. 225, 809–817 (1983).Article 
CAS 
PubMed 

Google Scholar 
Danyal, K., Dean, D. R., Hoffman, B. M. & Seefeldt, L. C. Electron transfer within nitrogenase: evidence for a deficit-spending mechanism. Biochemistry 50, 9255–9263 (2011). Stopped-flow spectroscopic studies of a MoFeP variant support the conclusion that the immediate result of rate-limiting protein conformational changes is the internal ET from P-cluster to FeMoco, followed by backfill to P-cluster from FeP.Article 
CAS 
PubMed 

Google Scholar 
Seefeldt, L. C. et al. Energy transduction in nitrogenase. Acc. Chem. Res. 51, 2179–2186 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chan, J. M., Christiansen, J., Dean, D. R. & Seefeldt, L. C. Spectroscopic evidence for changes in the redox state of the nitrogenase P-cluster during turnover. Biochemistry 38, 5779–5785 (1999).Article 
CAS 
PubMed 

Google Scholar 
Peters, J. W. et al. Redox-dependent structural changes in the nitrogenase P-cluster. Biochemistry 36, 1181–1187 (1997).Article 
CAS 
PubMed 

Google Scholar 
Lanzilotta, W. N. & Seefeldt, L. C. Changes in the midpoint potentials of the nitrogenase metal centers as a result of iron protein–molybdenum-iron protein complex formation. Biochemistry 36, 12976–12983 (1997).Article 
CAS 
PubMed 

Google Scholar 
Kurnikov, I. V., Charnley, A. K. & Beratan, D. N. From ATP to electron transfer: electrostatics and free-energy transduction in nitrogenase. J. Phys. Chem. B 105, 5359–5367 (2001).Article 
CAS 

Google Scholar 
Harris, D. F. et al. Mo-, V-, and Fe-nitrogenases use a universal eight-electron reductive-elimination mechanism to achieve N2 reduction. Biochemistry 58, 3293–3301 (2019).Article 
CAS 
PubMed 

Google Scholar 
Davydov, R. et al. Exploring electron/proton transfer and conformational changes in the nitrogenase MoFe protein and FeMo-cofactor through cryoreduction/EPR measurements. Isr. J. Chem. 56, 841–851 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Seefeldt, L. C. et al. Reduction of substrates by nitrogenases. Chem. Rev. 120, 5082–5106 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Durrant, M. C. Controlled protonation of iron–molybdenum cofactor by nitrogenase: a structural and theoretical analysis. Biochem. J. 355, 569–576 (2001).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Morrison, C. N., Spatzal, T. & Rees, D. C. Reversible protonated resting state of the nitrogenase active site. J. Am. Chem. Soc. 139, 10856–10862 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Igarashi, R. Y. & Seefeldt, L. C. Nitrogen fixation: the mechanism of the Mo-dependent nitrogenase. Crit. Rev. Biochem. Mol. Biol. 38, 351–384 (2003).Article 
CAS 
PubMed 

Google Scholar 
Renger, G. The light reactions of photosynthesis. Curr. Sci. 98, 1305–1319 (2010).CAS 

Google Scholar 
Kok, B., Forbush, B. & McGloin, M. Cooperation of charges in photosynthetic O2 evolution — I. A linear four step mechanism. Photochem. Photobiol. 11, 457–475 (1970).Article 
CAS 
PubMed 

Google Scholar 
Vinyard, D. J., Ananyev, G. M. & Dismukes, G. C. Photosystem II: the reaction center of oxygenic photosynthesis. Annu. Rev. Biochem. 82, 577–606 (2013).Article 
CAS 
PubMed 

Google Scholar 
Petrouleas, V. & Diner, B. A. Light-induced oxidation of the acceptor-side Fe(II) of photosystem II by exogenous quinones acting through the QB binding site. I. Quinones, kinetics and pH-dependence. Biochim. Biophys. Acta Bioenerg. 893, 126–137 (1987).Article 
CAS 

Google Scholar 
Hermes, S. et al. A time-resolved iron-specific x-ray absorption experiment yields no evidence for an Fe2+  → Fe3+ transition during QA− → QB electron transfer in the photosynthetic reaction center. Biochemistry 45, 353–359 (2006).Article 
CAS 
PubMed 

Google Scholar 
He, W. Z., Newell, W. R., Haris, P. I., Chapman, D. & Barber, J. Protein secondary structure of the isolated photosystem II reaction center and conformational changes studied by Fourier transform infrared spectroscopy. Biochemistry 30, 4552–4559 (1991).Article 
CAS 
PubMed 

Google Scholar 
Klauss, A., Haumann, M. & Dau, H. Seven steps of alternating electron and proton transfer in photosystem II water oxidation traced by time-resolved photothermal beam deflection at improved sensitivity. J. Phys. Chem. B 119, 2677–2689 (2015).Article 
CAS 
PubMed 

Google Scholar 
Nagy, G. et al. Dynamic properties of photosystem II membranes at physiological temperatures characterized by elastic incoherent neutron scattering. Increased flexibility associated with the inactivation of the oxygen evolving complex. Photosynth. Res. 111, 113–124 (2012).Article 
CAS 
PubMed 

Google Scholar 
Pieper, J. & Renger, G. Flash-induced structural dynamics in photosystem II membrane fragments of green plants. Biochemistry 48, 6111–6115 (2009).Article 
CAS 
PubMed 

Google Scholar 
Zabret, J. et al. Structural insights into photosystem II assembly. Nat. Plants 7, 524–538 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Glöckner, C. et al. Structural changes of the oxygen-evolving complex in photosystem II during the catalytic cycle. J. Biol. Chem. 288, 22607–22620 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
Ibrahim, M. et al. Untangling the sequence of events during the S2 → S3 transition in photosystem II and implications for the water oxidation mechanism. Proc. Natl Acad. Sci. USA 117, 12624–12635 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ishikita, H. & Knapp, E.-W. Induced conformational changes upon Cd2+ binding at photosynthetic reaction centers. Proc. Natl Acad. Sci. USA 102, 16215–16220 (2005).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rutherford, A. W. & Krieger-Liszkay, A. Herbicide-induced oxidative stress in photosystem II. Trends Biochem. Sci. 26, 648–653 (2001).Article 
CAS 
PubMed 

Google Scholar 
Becker, K., Cormann, K. U. & Nowaczyk, M. M. Assembly of the water-oxidizing complex in photosystem II. J. Photochem. Photobiol. B 104, 204–211 (2011).Article 
CAS 
PubMed 

Google Scholar 
Graige, M. S., Feher, G. & Okamura, M. Y. Conformational gating of the electron transfer reaction QA−•QB → QAQB−• in bacterial reaction centers of Rhodobacter sphaeroides determined by a driving force assay. Proc. Natl Acad. Sci. USA 95, 11679–11684 (1998). This paper reports that the rate of ET from QA to QB in the photosynthetic reaction centre is independent of the driving force for ET over a 150-meV range, providing support for the hypothesis that a rate-limiting conformational gating step precedes the ET reaction.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Renger, G., Gleiter, H. M., Haag, E. & Reifarth, F. Photosystem II: thermodynamics and kinetics of electron transport from QA− to QB(QB−) and deleterious effects of copper(II). Z. Naturforschung C 48, 234–240 (1993).Article 
CAS 

Google Scholar 
Xu, Q. & Gunner, M. R. Trapping conformational intermediate states in the reaction center protein from photosynthetic bacteria. Biochemistry 40, 3232–3241 (2001).Article 
CAS 
PubMed 

Google Scholar 
Renger, G. et al. Fluorescence and spectroscopic studies of exciton trapping and electron transfer in photosystem II of higher plants. Funct. Plant Biol. 22, 167–181 (1995).Article 
CAS 

Google Scholar 
Kaminskaya, O., Renger, G. & Shuvalov, V. A. Effect of dehydration on light-induced reactions in photosystem II: photoreactions of cytochrome b559. Biochemistry 42, 8119–8132 (2003).Article 
CAS 
PubMed 

Google Scholar 
Pieper, J. et al. Temperature- and hydration-dependent protein dynamics in photosystem II of green plants studied by quasielastic neutron scattering. Biochemistry 46, 11398–11409 (2007).Article 
CAS 
PubMed 

Google Scholar 
Renger, G. & Renger, T. Photosystem II: the machinery of photosynthetic water splitting. Photosynth. Res. 98, 53–80 (2008).Article 
CAS 
PubMed 

Google Scholar 
de Wijn, R. & van Gorkom, H. J. Kinetics of electron transfer from QA to QB in photosystem II. Biochemistry 40, 11912–11922 (2001).Article 
PubMed 

Google Scholar 
Lupı́nková, L., Metz, J. G., Diner, B. A., Vass, I. & Komenda, J. Histidine residue 252 of the photosystem II D1 polypeptide is involved in a light-induced cross-linking of the polypeptide with the α subunit of cytochrome b-559: study of a site-directed mutant of Synechocystis PCC 6803. Biochim. Biophys. Acta Bioenerg. 1554, 192–201 (2002).Article 

Google Scholar 
Diner, B. A., Petrouleas, V. & Wendoloski, J. J. The iron-quinone electron-acceptor complex of photosystem II. Physiol. Plant. 81, 423–436 (1991).Article 
CAS 

Google Scholar 
Kobayashi, T., Shimada, Y., Nagao, R. & Noguchi, T. pH-dependent regulation of electron flow in photosystem II by a histidine residue at the stromal surface. Biochemistry 61, 1351–1362 (2022). This research uses detection of stromal pH changes and modulation of the redox potential of QB to provide evidence that the D1-His252 residue in PSII plays a crucial role in regulating electron flow and plastoquinone exchange at the QB site.Article 
CAS 
PubMed 

Google Scholar 
Sigfridsson, K. G. V., Bernát, G., Mamedov, F. & Styring, S. Molecular interference of Cd2+ with photosystem II. Biochim. Biophys. Acta Bioenerg. 1659, 19–31 (2004).Article 
CAS 

Google Scholar 
Francia, F., Palazzo, G., Mallardi, A., Cordone, L. & Venturoli, G. Residual water modulates QA−-to-QB electron transfer in bacterial reaction centers embedded in trehalose amorphous matrices. Biophys. J. 85, 2760–2775 (2003).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pieper, J., Hauss, T., Buchsteiner, A. & Renger, G. The effect of hydration on protein flexibility in photosystem II of green plants studied by quasielastic neutron scattering. Eur. Biophys. J. 37, 657–663 (2008).Article 
CAS 
PubMed 

Google Scholar 
Vasil’ev, S., Bergmann, A., Redlin, H., Eichler, H.-J. & Renger, G. On the role of exchangeable hydrogen bonds for the kinetics of P680+● QA−● formation and P680+● Pheo−● recombination in photosystem II. Biochim. Biophys. Acta Bioenerg. 1276, 35–44 (1996).Article 

Google Scholar 
Sugo, Y., Saito, K. & Ishikita, H. Conformational changes and H-bond rearrangements during quinone release in photosystem II. Biochemistry 61, 1836–1843 (2022).Article 
CAS 
PubMed 

Google Scholar 
Sirohiwal, A. & Pantazis, D. A. Functional water networks in fully hydrated photosystem II. J. Am. Chem. Soc. 144, 22035–22050 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Alexov, E. G. & Gunner, M. R. Calculated protein and proton motions coupled to electron transfer: electron transfer from QA− to QB in bacterial photosynthetic reaction centers. Biochemistry 38, 8253–8270 (1999).Article 
CAS 
PubMed 

Google Scholar 
Saito, K., Rutherford, A. W. & Ishikita, H. Mechanism of proton-coupled quinone reduction in photosystem II. Proc. Natl Acad. Sci. USA 110, 954–959 (2013). Quantum mechanics/molecular mechanics analysis of the PT pathways and energetics involved in the two-step reduction of plastoquinone QB to QBH2 in PSII inform a detailed mechanistic model for this process.Article 
CAS 
PubMed 

Google Scholar 
Kulik, N., Kutý, M. & Řeha, D. The study of conformational changes in photosystem II during a charge separation. J. Mol. Model. 26, 75 (2020).Article 
CAS 
PubMed 

Google Scholar 
Paddock, M. L., Feher, G. & Okamura, M. Y. Proton transfer pathways and mechanism in bacterial reaction centers. FEBS Lett. 555, 45–50 (2003).Article 
CAS 
PubMed 

Google Scholar 
Fufezan, C., Zhang, C., Krieger-Liszkay, A. & Rutherford, A. W. Secondary quinone in photosystem II of Thermosynechococcus elongatus: semiquinone–iron EPR signals and temperature dependence of electron transfer. Biochemistry 44, 12780–12789 (2005).Article 
CAS 
PubMed 

Google Scholar 
Kimura, M., Kato, Y. & Noguchi, T. Protonation state of a key histidine ligand in the iron–quinone complex of photosystem II as revealed by light-induced ATR-FTIR spectroscopy. Biochemistry 59, 4336–4343 (2020).Article 
CAS 
PubMed 

Google Scholar 
Stowell, M. H. B. et al. Light-induced structural changes in photosynthetic reaction center: implications for mechanism of electron-proton transfer. Science 276, 812–816 (1997).Article 
CAS 
PubMed 

Google Scholar 
Suga, M. et al. Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL. Nature 543, 131–135 (2017). The structural changes in PSII induced by two-flash illumination at room temperature are observed via time-resolved serial femtosecond crystallography with an X-ray free electron laser to 2.35 Å resolution.Article 
CAS 
PubMed 

Google Scholar 
Nabedryk, E. & Breton, J. Coupling of electron transfer to proton uptake at the QB site of the bacterial reaction center: a perspective from FTIR difference spectroscopy. Biochim. Biophys. Acta Bioenerg. 1777, 1229–1248 (2008).Article 
CAS 

Google Scholar 
Xu, Q., Baciou, L., Sebban, P. & Gunner, M. R. Exploring the energy landscape for QA− to QB electron transfer in bacterial photosynthetic reaction centers: effect of substrate position and tail length on the conformational gating step. Biochemistry 41, 10021–10025 (2002).Article 
CAS 
PubMed 

Google Scholar 
Parak, F. et al. Evidence for a correlation between the photoinduced electron transfer and dynamic properties of the chromatophore membranes from Rhodospirillum rubrum. FEBS Lett. 117, 368–372 (1980).Article 
CAS 
PubMed 

Google Scholar 
Garbers, A., Reifarth, F., Kurreck, J., Renger, G. & Parak, F. Correlation between protein flexibility and electron transfer from to QB in PSII membrane fragments from spinach. Biochemistry 37, 11399–11404 (1998).Article 
CAS 
PubMed 

Google Scholar 
Koua, F. H. M. Structural changes in the acceptor site of photosystem II upon Ca2+/Sr2+ exchange in the Mn4CaO5 cluster site and the possible long-range interactions. Biomolecules 9, 371 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kargul, J. et al. Purification, crystallization and X-ray diffraction analyses of the T. elongatus PSII core dimer with strontium replacing calcium in the oxygen-evolving complex. Biochim. Biophys. Acta Bioenerg. 1767, 404–413 (2007).Article 
CAS 

Google Scholar 
Koua, F. H. M., Umena, Y., Kawakami, K. & Shen, J.-R. Structure of Sr-substituted photosystem II at 2.1 Å resolution and its implications in the mechanism of water oxidation. Proc. Natl Acad. Sci. USA 110, 3889–3894 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kato, Y. et al. Influence of the PsbA1/PsbA3, Ca2+/Sr2+ and Cl−/Br− exchanges on the redox potential of the primary quinone QA in photosystem II from Thermosynechococcus elongatus as revealed by spectroelectrochemistry. Biochim. Biophys. Acta 1817, 1998–2004 (2012).Article 
CAS 
PubMed 

Google Scholar 
Kato, Y. & Noguchi, T. Long-range interaction between the Mn4CaO5 cluster and the non-heme iron center in photosystem II as revealed by FTIR spectroelectrochemistry. Biochemistry 53, 4914–4923 (2014).Article 
CAS 
PubMed 

Google Scholar 
Kato, Y., Ohira, A., Nagao, R. & Noguchi, T. Does the water-oxidizing Mn4CaO5 cluster regulate the redox potential of the primary quinone electron acceptor QA in photosystem II? A study by Fourier transform infrared spectroelectrochemistry. Biochim. Biophys. Acta Bioenerg. 1860, 148082 (2019).Article 
CAS 
PubMed 

Google Scholar 
Stubbe, J. & Nocera, D. G. Radicals in biology: your life is in their hands. J. Am. Chem. Soc. 143, 13463–13472 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Greene, B. L. et al. Ribonucleotide reductases: structure, chemistry, and metabolism suggest new therapeutic targets. Annu. Rev. Biochem. 89, 45–75 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ge, J., Yu, G., Ator, M. A. & Stubbe, J. A. Pre-steady-state and steady-state kinetic analysis of E. coli class I ribonucleotide reductase. Biochemistry 42, 10071–10083 (2003).Article 
CAS 
PubMed 

Google Scholar 
Licht, S., Gerfen, G. J. & Stubbe, J. Thiyl radicals in ribonucleotide reductases. Science 271, 477–481 (1996).Article 
CAS 
PubMed 

Google Scholar 
Stubbe, J. Ribonucleotide reductases in the twenty-first century. Proc. Natl Acad. Sci. USA 95, 2723–2724 (1998).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kang, G., Taguchi, A. T., Stubbe, J. & Drennan, C. L. Structure of a trapped radical transfer pathway within a ribonucleotide reductase holocomplex. Science 368, 424–427 (2020). In this paper, the normally transient active RNR supercomplex is captured under catalytically relevant conditions and its structure is examined by cryoEM.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Climent, I., Sjöberg, B. M. & Huang, C. Y. Carboxyl-terminal peptides as probes for Escherichia coli ribonucleotide reductase subunit interaction: kinetic analysis of inhibition studies. Biochemistry 30, 5164–5171 (1991).Article 
CAS 
PubMed 

Google Scholar 
Mao, S. S. et al. A model for the role of multiple cysteine residues involved in ribonucleotide reduction: amazing and still confusing. Biochemistry 31, 9733–9743 (1992).Article 
CAS 
PubMed 

Google Scholar 
Ravichandran, K., Olshansky, L., Nocera, D. & Stubbe, J. Subunit interaction dynamics of class Ia ribonucleotide reductases: in search of a robust assay. Biochemistry 59, 1442–1453 (2020).Article 
CAS 
PubMed 

Google Scholar 
Ando, N. et al. Structural interconversions modulate activity of Escherichia coli ribonucleotide reductase. Proc. Natl Acad. Sci. USA 108, 21046–21051 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hofer, A., Crona, M., Logan, D. T. & Sjöberg, B.-M. DNA building blocks: keeping control of manufacture. Crit. Rev. Biochem. Mol. Biol. 47, 50–63 (2012).Article 
CAS 
PubMed 

Google Scholar 
Minnihan, E. C. et al. Generation of a stable, aminotyrosyl radical-induced α2β2 complex of Escherichia coli class Ia ribonucleotide reductase. Proc. Natl Acad. Sci. USA 110, 3835–3840 (2013). This paper shows that trapping a radical along the RNR PCET pathway stalls the normally short-lived interactions between α2 and β2 and reveals an intrinsic link between protein conformation and PCET reactivity.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Minnihan, E. C., Seyedsayamdost, M. R., Uhlin, U. & Stubbe, J. Kinetics of radical intermediate formation and deoxynucleotide production in 3-aminotyrosine-substituted Escherichia coli ribonucleotide reductases. J. Am. Chem. Soc. 133, 9430–9440 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ravichandran, K. R. et al. Formal reduction potentials of difluorotyrosine and trifluorotyrosine protein residues: defining the thermodynamics of multistep radical transfer. J. Am. Chem. Soc. 139, 2994–3004 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Berry, B. W., Martinez-Rivera, M. C. & Tommos, C. Reversible voltammograms and a Pourbaix diagram for a protein tyrosine radical. Proc. Natl Acad. Sci. U A 109, 9739–9743 (2012).Article 
CAS 

Google Scholar 
Hay, S., Westerlund, K. & Tommos, C. Moving a phenol hydroxyl group from the surface to the interior of a protein: effects on the phenol potential and pKa. Biochemistry 44, 11891–11902 (2005).Article 
CAS 
PubMed 

Google Scholar 
Ravichandran, K. R. et al. A >200 meV uphill thermodynamic landscape for radical transport in Escherichia coli ribonucleotide reductase determined using fluorotyrosine-substituted enzymes. J. Am. Chem. Soc. 138, 13706–13716 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wörsdörfer, B. et al. Function of the diiron cluster of Escherichia coli class Ia ribonucleotide reductase in proton-coupled electron transfer. J. Am. Chem. Soc. 135, 8585–8593 (2013). Leveraging the ability to trap the active RNR complex, the researchers of this paper use Mössbauer spectroscopy to define the initial target of rate-limiting conformational changes in RNR as consisting of PT from the diiron metallocofactor to Y122.Article 
PubMed 

Google Scholar 
Seyedsayamdost, M. R., Chan, C. T. Y., Mugnaini, V., Stubbe, J. & Bennati, M. PELDOR spectroscopy with DOPA-β2 and NH2Y-α2s: distance measurements between residues involved in the radical propagation pathway of E. coli ribonucleotide reductase. J. Am. Chem. Soc. 129, 15748–15749 (2007).Article 
CAS 
PubMed 

Google Scholar 
Lebrette, H. et al. Structure of a ribonucleotide reductase R2 protein radical. Science 382, 109–113 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yokoyama, K., Uhlin, U. & Stubbe, J. Site-specific incorporation of 3-nitrotyrosine as a probe of pKa perturbation of redox-active tyrosines in ribonucleotide reductase. J. Am. Chem. Soc. 132, 8385–8397 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ator, M., Salowe, S. P., Stubbe, J., Emptage, M. H. & Robins, M. J. 2′-Azido-2′-deoxynucleotide interaction with E. coli ribonucleotide reductase: generation of a new radical species. J. Am. Chem. Soc. 106, 1886–1887 (1984).Article 
CAS 

Google Scholar 
Sjöberg, B. M., Gräslund, A. & Eckstein, F. A substrate radical intermediate in the reaction between ribonucleotide reductase from Escherichia coli and 2′-azido-2′-deoxynucleoside diphosphates. J. Biol. Chem. 258, 8060–8067 (1983).Article 
PubMed 

Google Scholar 
Högbom, M. et al. Displacement of the tyrosyl radical cofactor in ribonucleotide reductase obtained by single-crystal high-field EPR and 1.4-Å x-ray data. Proc. Natl Acad. Sci. USA 100, 3209–3214 (2003).Article 
PubMed 
PubMed Central 

Google Scholar 
Offenbacher, A. R., Burns, L. A., Sherrill, C. D. & Barry, B. A. Redox-linked conformational control of proton-coupled electron transfer: Y122 in the ribonucleotide reductase β2 subunit. J. Phys. Chem. B 117, 8457–8468 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Offenbacher, A. R., Minnihan, E. C., Stubbe, J. & Barry, B. A. Redox-linked changes to the hydrogen-bonding network of ribonucleotide reductase β2. J. Am. Chem. Soc. 135, 6380–6383 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Watson, R. A., Offenbacher, A. R. & Barry, B. A. Detection of catalytically linked conformational changes in wild-type class Ia ribonucleotide reductase using reaction-induced FTIR spectroscopy. J. Phys. Chem. B 125, 8362–8372 (2021).Article 
CAS 
PubMed 

Google Scholar 
Yokoyama, K., Smith, A. A., Corzilius, B., Griffin, R. G. & Stubbe, J. Equilibration of tyrosyl radicals (Y356·, Y731·, Y730·) in the radical propagation pathway of the Escherichia coli class Ia ribonucleotide reductase. J. Am. Chem. Soc. 133, 18420–18432 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ravichandran, K. R., Minnihan, E. C., Wei, Y., Nocera, D. G. & Stubbe, J. A. Reverse electron transfer completes the catalytic cycle in a 2,3,5-trifluorotyrosine-substituted ribonucleotide reductase. J. Am. Chem. Soc. 137, 14387–14395 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yokoyama, K., Uhlin, U. & Stubbe, J. A hot oxidant, 3-NO2Y122 radical, unmasks conformational gating in ribonucleotide reductase. J. Am. Chem. Soc. 132, 15368–15379 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Offenbacher, A. R., Watson, R. A., Pagba, C. V. & Barry, B. A. Redox-dependent structural coupling between the α2 and β2 subunits in E. coli ribonucleotide reductase. J. Phys. Chem. B 118, 2993–3004 (2014).Article 
CAS 
PubMed 

Google Scholar 
Srinivas, V. et al. Metal-free ribonucleotide reduction powered by a DOPA radical in mycoplasma pathogens. Nature 563, 416–420 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Blaesi, E. J. et al. Metal-free class Ie ribonucleotide reductase from pathogens initiates catalysis with a tyrosine-derived dihydroxyphenylalanine radical. Proc. Natl Acad. Sci. USA 115, 10022–10027 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bollinger, J. M. Jr. et al. Mechanism of assembly of the tyrosyl radical-diiron(III) cofactor of E. coli ribonucleotide reductase. 3. Kinetics of the limiting Fe2+ reaction by optical, EPR, and Moessbauer spectroscopies. J. Am. Chem. Soc. 116, 8024–8032 (1994).Article 
CAS 

Google Scholar 
Minnihan, E. C., Nocera, D. G. & Stubbe, J. Reversible, long-range radical transfer in E. coli class Ia ribonucleotide reductase. Acc. Chem. Res. 46, 2524–2535 (2013).Article 
CAS 
PubMed 

Google Scholar 
Oyala, P. H. et al. Biophysical characterization of fluorotyrosine probes site-specifically incorporated into enzymes: E. coli ribonucleotide reductase as an example. J. Am. Chem. Soc. 138, 7951–7964 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Seyedsayamdost, M. R., Reece, S. Y., Nocera, D. G. & Stubbe, J. Mono-, di-, tri-, and tetra-substituted fluorotyrosines: new probes for enzymes that use tyrosyl radicals in catalysis. J. Am. Chem. Soc. 128, 1569–1579 (2006).Article 
CAS 
PubMed 

Google Scholar 
Pizano, A. A. et al. Photo-ribonucleotide reductase β2 by selective cysteine labeling with a radical phototrigger. Proc. Natl Acad. Sci. USA 109, 39–43 (2012).Article 
CAS 
PubMed 

Google Scholar 
Cui, C., Song, D. Y., Drennan, C. L., Stubbe, J. & Nocera, D. G. Radical transport facilitated by a proton transfer network at the subunit interface of ribonucleotide reductase. J. Am. Chem. Soc. 145, 5145–5154 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cui, C. et al. Gated proton release during radical transfer at the subunit interface of ribonucleotide reductase. J. Am. Chem. Soc. 143, 176–183 (2021).Article 
CAS 
PubMed 

Google Scholar 
Ravichandran, K. et al. Glutamate 350 plays an essential role in conformational gating of long-range radical transport in Escherichia coli class Ia ribonucleotide reductase. Biochemistry 56, 856–868 (2017).Article 
CAS 
PubMed 

Google Scholar 
Zhong, J., Reinhardt, C. R. & Hammes-Schiffer, S. Direct proton-coupled electron transfer between interfacial tyrosines in ribonucleotide reductase. J. Am. Chem. Soc. 145, 4784–4790 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Nick, T. U. et al. Hydrogen bond network between amino acid radical intermediates on the proton-coupled electron transfer pathway of E. coli α2 ribonucleotide reductase. J. Am. Chem. Soc. 137, 289–298 (2015).Article 
CAS 
PubMed 

Google Scholar 
Hecker, F., Stubbe, J. & Bennati, M. Detection of water molecules on the radical transfer pathway of ribonucleotide reductase by 17O electron–nuclear double resonance spectroscopy. J. Am. Chem. Soc. 143, 7237–7241 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Greene, B. L., Taguchi, A. T., Stubbe, J. & Nocera, D. G. Conformationally dynamic radical transfer within ribonucleotide reductase. J. Am. Chem. Soc. 139, 16657–16665 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kasanmascheff, M., Lee, W., Nick, T. U., Stubbe, J. & Bennati, M. Radical transfer in E. coli ribonucleotide reductase: a NH2Y731/R411A-α mutant unmasks a new conformation of the pathway residue 731. Chem. Sci. 7, 2170–2178 (2016).Article 
CAS 
PubMed 

Google Scholar 
Meyer, A. et al. 19F electron-nuclear double resonance reveals interaction between redox-active tyrosines across the α/β interface of E. coli ribonucleotide reductase. J. Am. Chem. Soc. 144, 11270–11282 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Stubbe, J. A., Ackles, D., Ator, M. & Krenitsky, T. Mechanism of ribonucleoside diphosphate reductase from Escherichia coli. Evidence for 3′-C-H bond cleavage. J. Biol. Chem. 255, 1625–1630 (1980).Article 

Google Scholar 
Levitz, T. S. et al. A rapid and sensitive assay for quantifying the activity of both aerobic and anaerobic ribonucleotide reductases acting upon any or all substrates. PLoS ONE 17, e0269572 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Livoreil, A., Dietrich-Buchecker, C. O. & Sauvage, J. P. Electrochemically triggerred swinging of a [2]-catenate. J. Am. Chem. Soc. 116, 9399–9400 (1994).Article 
CAS 
PubMed 

Google Scholar 
Meylemans, H. A., Hewitt, J. T., Abdelhaq, M., Vallett, P. J. & Damrauer, N. H. Exploiting conformational dynamics to facilitate formation and trapping of electron-transfer photoproducts in metal complexes. J. Am. Chem. Soc. 132, 11464–11466 (2010).Article 
CAS 
PubMed 

Google Scholar 
Lister, F. G. A., Le Bailly, B. A. F., Webb, S. J. & Clayden, J. Ligand-modulated conformational switching in a fully synthetic membrane-bound receptor. Nat. Chem. 9, 420–425 (2017).Article 
CAS 

Google Scholar 
Xie, X., Crespo, G. A., Mistlberger, G. & Bakker, E. Photocurrent generation based on a light-driven proton pump in an artificial liquid membrane. Nat. Chem. 6, 202–207 (2014).Article 
CAS 
PubMed 

Google Scholar 
Gemen, J. et al. Disequilibrating azobenzenes by visible-light sensitization under confinement. Science 381, 1357–1363 (2023).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles