The structural basis of pyridoxal-5′-phosphate-dependent β-NAD-alkylating enzymes

Walsh, C. T. & Tang, Y. The Chemical Biology of Human Vitamins (RSC, 2019).Percudani, R. & Peracchi, A. A genomic overview of pyridoxal-phosphate-dependent enzymes. EMBO Rep. 4, 850–854 (2003).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Savile, C. K. et al. Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science 329, 305–309 (2010).Article 
CAS 
PubMed 

Google Scholar 
Phillips, R. S., Poteh, P., Krajcovic, D., Miller, K. A. & Hoover, T. R. Crystal structure of d-ornithine/d-lysine decarboxylase, a stereoinverting decarboxylase: implications for substrate specificity and stereospecificity of fold III decarboxylases. Biochemistry 58, 1038–1042 (2019).Article 
CAS 
PubMed 

Google Scholar 
de Chiara, C. et al. d-Cycloserine destruction by alanine racemase and the limit of irreversible inhibition. Nat. Chem. Biol. 16, 686–694 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Li, Q. et al. Deciphering the biosynthetic origin of l-allo-isoleucine. J. Am. Chem. Soc. 138, 408–415 (2016).Article 
CAS 
PubMed 

Google Scholar 
Phillips, R. S., Demidkina, T. V. & Faleev, N. G. Structure and mechanism of tryptophan indole-lyase and tyrosine phenol-lyase. Biochim. Biophys. Acta Proteins Proteom. 1647, 167–172 (2003).Article 
CAS 

Google Scholar 
Sato, D. & Nozaki, T. Methionine gamma-lyase: the unique reaction mechanism, physiological roles, and therapeutic applications against infectious diseases and cancers. IUBMB Life 61, 1019–1028 (2009).Article 
CAS 
PubMed 

Google Scholar 
Watkins-Dulaney, E., Straathof, S. & Arnold, F. Tryptophan synthase: biocatalyst extraordinaire. ChemBioChem 22, 5–16 (2021).Article 
CAS 
PubMed 

Google Scholar 
Hai, Y., Chen, M., Huang, A. & Tang, Y. Biosynthesis of mycotoxin fusaric acid and application of a PLP-dependent enzyme for chemoenzymatic synthesis of substituted l-pipecolic acids. J. Am. Chem. Soc. 142, 19668–19677 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cui, Z. et al. Pyridoxal-5′-phosphate-dependent alkyl transfer in nucleoside antibiotic biosynthesis. Nat. Chem. Biol. 16, 904–911 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Seebeck, F. P. & Hilvert, D. Conversion of a PLP-dependent racemase into an aldolase by a single active site mutation. J. Am. Chem. Soc. 125, 10158–10159 (2003).Article 
CAS 
PubMed 

Google Scholar 
Alexeev, D. et al. The crystal structure of 8-amino-7-oxononanoate synthase: a bacterial PLP-dependent, acyl-CoA-condensing enzyme. J. Mol. Biol. 284, 401–419 (1998).Article 
CAS 
PubMed 

Google Scholar 
Du, Y.-L. et al. A pyridoxal phosphate–dependent enzyme that oxidizes an unactivated carbon-carbon bond. Nat. Chem. Biol. 12, 194–199 (2016).Article 
CAS 
PubMed 

Google Scholar 
Hoffarth, E. R. et al. A shared mechanistic pathway for pyridoxal phosphate–dependent arginine oxidases. Proc. Natl Acad. Sci. USA 118, e2012591118 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hoffarth, E. R., Rothchild, K. W. & Ryan, K. S. Emergence of oxygen- and pyridoxal phosphate-dependent reactions. FEBS J. 287, 1403–1428 (2020).Article 
CAS 
PubMed 

Google Scholar 
Noguchi, T., Isogai, S., Terada, T., Nishiyama, M. & Kuzuyama, T. Cryptic oxidative transamination of hydroxynaphthoquinone in natural product biosynthesis. J. Am. Chem. Soc. 144, 5435–5440 (2022).Article 
CAS 
PubMed 

Google Scholar 
Cordoza, J. L. et al. Mechanistic and structural insights into a divergent PLP-dependent l-enduracididine cyclase from a toxic cyanobacterium. ACS Catal. 13, 9817–9828 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gao, J. et al. A pyridoxal 5′-phosphate-dependent Mannich cyclase. Nat. Catal. 6, 476–486 (2023).Article 
CAS 

Google Scholar 
Eliot, A. C. & Kirsch, J. F. Pyridoxal phosphate enzymes: mechanistic, structural, and evolutionary considerations. Annu. Rev. Biochem. 73, 383–415 (2004).Article 
CAS 
PubMed 

Google Scholar 
Du, Y. L. & Ryan, K. S. Pyridoxal phosphate-dependent reactions in the biosynthesis of natural products. Nat. Prod. Rep. 36, 430–457 (2019).Article 
CAS 
PubMed 

Google Scholar 
Rocha, J. F., Pina, A. F., Sousa, S. F. & Cerqueira, N. M. F. S. A. PLP-dependent enzymes as important biocatalysts for the pharmaceutical, chemical and food industries: a structural and mechanistic perspective. Catal. Sci. Technol. 9, 4864–4876 (2019).Article 
CAS 

Google Scholar 
Ellis, J. M. et al. Biocatalytic synthesis of non-standard amino acids by a decarboxylative aldol reaction. Nat. Catal. 5, 136–143 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kimura, T., Vassilev, V. P., Shen, G. J. & Wong, C. H. Enzymatic synthesis of β-hydroxy-α-amino acids based on recombinant d- and l-threonine aldolases. J. Am. Chem. Soc. 119, 11734–11742 (1997).Article 
CAS 

Google Scholar 
Barra, L. et al. β-NAD as a building block in natural product biosynthesis. Nature 600, 754–758 (2021).Article 
CAS 
PubMed 

Google Scholar 
Hu, Z., Awakawa, T., Ma, Z. & Abe, I. Aminoacyl sulfonamide assembly in SB-203208 biosynthesis. Nat. Commun. 10, 184 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Barra, L., Awakawa, T. & Abe, I. Noncanonical functions of enzyme cofactors as building blocks in natural product biosynthesis. JACS Au 2, 1950–1963 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bateman, A. et al. The Pfam protein families database. Nucleic Acids Res. 28, 263–266 (2000).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Harmange Magnani, C. S. & Maimone, T. J. Dearomative synthetic entry into the altemicidin alkaloids. J. Am. Chem. Soc. 143, 7935–7939 (2021).Article 
CAS 
PubMed 

Google Scholar 
Fleischman, N. M. et al. Molecular characterization of novel pyridoxal-5′-phosphate-dependent enzymes from the human microbiome. Protein Sci. 23, 1060–1076 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Huai, Q. et al. Crystal structures of 1-aminocyclopropane-1-carboxylate (ACC) synthase in complex with aminoethoxyvinylglycine and pyridoxal-5′-phosphate provide new insight into catalytic mechanisms. J. Biol. Chem. 276, 38210–38216 (2001).Article 
CAS 
PubMed 

Google Scholar 
Kelly, R. C. et al. The Vibrio cholerae quorum-sensing autoinducer CAI-1: analysis of the biosynthetic enzyme CqsA. Nat. Chem. Biol. 5, 891–895 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jahan, N. et al. Insights into the biosynthesis of the Vibrio cholerae major autoinducer CAI-1 from the crystal structure of the PLP-dependent enzyme CqsA. J. Mol. Biol. 392, 763–773 (2009).Article 
CAS 
PubMed 

Google Scholar 
Chen, M., Liu, C. T. & Tang, Y. Discovery and biocatalytic application of a PLP-dependent amino acid γ-substitution enzyme that catalyzes C–C bond formation. J. Am. Chem. Soc. 142, 10506–10515 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Abad, A. N. D. et al. Discovery and characterization of pyridoxal 5′-phosphate-dependent cycloleucine synthases. J. Am. Chem. Soc. 146, 14672–14684 (2024).Article 
CAS 
PubMed 

Google Scholar 
Liu, S. et al. Molecular and structural basis for Cγ–C bond formation by PLP‐dependent enzyme Fub7. Angew. Chem. Int. Ed. 63, e202317161 (2024).Article 
CAS 

Google Scholar 
Gherardini, P. F., Ausiello, G., Russell, R. B. & Helmer-Citterich, M. Modular architecture of nucleotide-binding pockets. Nucleic Acids Res. 38, 3809–3816 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sundriyal, A., Roberts, A. K., Shone, C. C. & Acharya, K. R. Structural basis for substrate recognition in the enzymatic component of ADP-ribosyltransferase toxin CDTa from Clostridium difficile. J. Biol. Chem. 284, 28713–28719 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Langelier, M., Adp-ribosyl, P., Planck, J. L., Roy, S. & Pascal, J. M. Structural basis for DNA damage–dependent poly(ADP-ribosyl)ation by human PARP-1. Science 336, 728–733 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Alemasova, E. E. & Lavrik, O. I. Poly(ADP-ribosyl)ation by PARP1: reaction mechanism and regulatory proteins. Nucleic Acids Res. 47, 3811–3827 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Xu, Z., Pan, G., Zhou, H. & Shen, B. Discovery and characterization of 1-aminocyclopropane-1-carboxylic acid synthase of bacterial origin. J. Am. Chem. Soc. 140, 16957–16961 (2018).Article 
CAS 
PubMed 

Google Scholar 
Maruyama, C. et al. C-Methylation of S-adenosyl-L-methionine occurs prior to cyclopropanation in the biosynthesis of 1-amino-2-methylcyclopropanecarboxylic acid (Norcoronamic acid) in a bacterium. Biomolecules 10, 775–790 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mann, S. & Ploux, O. Pyridoxal-5′-phosphate-dependent enzymes involved in biotin biosynthesis: structure, reaction mechanism and inhibition. Biochim. Biophys. Acta Proteins Proteom. 1814, 1459–1466 (2011).Article 
CAS 

Google Scholar 
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lee, Y.-H., Ren, D., Jeon, B. & Liu, H.-W. S-Adenosylmethionine: more than just a methyl donor. Nat. Prod. Rep. 40, 1521–1549 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Komeda, H., Kobayashi, M. & Shimizu, S. Characterization of the gene cluster of high-molecular-mass nitrile hydratase (H-NHase) induced by its reaction product in Rhodococcus rhodochrous J1. Proc. Natl Acad. Sci. USA 93, 4267–4272 (1996).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tao, H. et al. Discovery of non-squalene triterpenes. Nature 606, 414–419 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Mori, T. et al. C-Glycoside metabolism in the gut and in nature: identification, characterization, structural analyses and distribution of C-C bond-cleaving enzymes. Nat. Commun. 12, 6294 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zivanov, J., Nakane, T. & Scheres, S. H. A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis. IUCrJ 6, 5–17 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).Scheres, S. H. & Chen, S. Prevention of overfitting in cryo-EM structure determination. Nat. Methods 9, 853–854 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, S. et al. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy. Ultramicroscopy 135, 24–35 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).Article 
CAS 
PubMed 

Google Scholar 
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hirakawa, Y. et al. Characterization of a novel type of carbonic anhydrase that acts without metal cofactors. BMC Biol. 19, 105 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Imasaki, T. et al. CAMSAP2 organizes a γ-tubulin-independent microtubule nucleation centre through phase separation. Elife 11, e77365 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).Article 
PubMed 

Google Scholar 
Zhu, W., Shenoy, A., Kundrotas, P. & Elofsson, A. Evaluation of AlphaFold-Multimer prediction on multi-chain protein complexes. Bioinformatics 39, btad424 (2023).Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Elfmann, C. & Stülke, J. PAE viewer: a webserver for the interactive visualization of the predicted aligned error for multimer structure predictions and crosslinks. Nucleic Acids Res. 51, W404–W410 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Case, D. A. et al. Amber 2020 (University of California, San Francisco, 2020).Maier, J. A. et al. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 11, 3696–3713 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Walker, R. C., de Souza, M. M., Mercer, I. P., Gould, I. R. & Klug, D. R. Large and fast relaxations inside a protein: calculation and measurement of reorganization energies in alcohol dehydrogenase. J. Phys. Chem. B 106, 11658–11665 (2002).Article 
CAS 

Google Scholar 
Pavelites, J. J., Gao, J., Bash, P. A. & Mackerell, A. D. Jr A molecular mechanics force field for NAD+ NADH, and the pyrophosphate groups of nucleotides. J. Comput. Chem. 18, 221–239 (1997).Article 
CAS 

Google Scholar 
Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. Development and testing of a general Amber force field. J. Comput. Chem. 25, 1157–1174 (2004).Article 
CAS 
PubMed 

Google Scholar 
Bayly, C. I., Cieplak, P., Cornell, W. & Kollman, P. A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J. Phys. Chem. 97, 10269–10280 (1993).Article 
CAS 

Google Scholar 
Frisch, M.J. et al. Gaussian 16 revision B.01 (Gaussian, 2016).Lusiany, T. et al. Enhancement of SARS-CoV-2 infection via crosslinking of adjacent spike proteins by N-terminal domain-targeting antibodies. Viruses 15, 2421 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).Article 
CAS 

Google Scholar 
Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).Article 
PubMed 

Google Scholar 
Bernetti, M. & Bussi, G. Pressure control using stochastic cell rescaling. J. Chem. Phys. 153, 114107 (2020).Article 
CAS 
PubMed 

Google Scholar 
Hess, B., Bekker, H., Berendsen, H. J. C. & Fraaije, J. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997).Article 
CAS 

Google Scholar 
Hess, B. P-LINCS: a parallel linear constraint solver for molecular simulation. J. Chem. Theory Comput. 4, 116–122 (2008).Article 
CAS 
PubMed 

Google Scholar 
Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).Article 
CAS 

Google Scholar 
Essmann, U. et al. A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593 (1995).Article 
CAS 

Google Scholar 
Hess, B., Kutzner, C., van der Spoel, D. & Lindahl, E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008).Article 
CAS 
PubMed 

Google Scholar 
Vermeeren, P. et al. Pericyclic reaction benchmarks: hierarchical computations targeting CCSDT(Q)/CBS and analysis of DFT performance. Phys. Chem. Chem. Phys. 24, 18028–18042 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhao, Y. & Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008).Article 
CAS 

Google Scholar 
Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 8, 1057–1065 (2006).Article 
CAS 
PubMed 

Google Scholar 
Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).Article 
CAS 
PubMed 

Google Scholar 
Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009).Article 
CAS 
PubMed 

Google Scholar 
Gonzalez, C. & Schlegel, H. B. Reaction path following in mass-weighted internal coordinates. J. Phys. Chem. 94, 5523–5527 (1990).Article 
CAS 

Google Scholar 
Fukui, K. The path of chemical reactions – the IRC approach. Acc. Chem. Res. 14, 363–368 (1981).Article 
CAS 

Google Scholar 
Maeda, S., Harabuchi, Y., Ono, Y., Taketsugu, T. & Morokuma, K. Intrinsic reaction coordinate: calculation, bifurcation, and automated search. Int. J. Quantum Chem. 115, 258–269 (2015).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles