Phase equilibrium thermodynamics of lithium–sulfur batteries

Cheng, Q. et al. Constructing a 700 Wh kg−1-level rechargeable lithium−sulfur pouch cell. J. Energy Chem. 76, 181–186 (2023).Article 
CAS 

Google Scholar 
Seh, Z. W., Sun, Y., Zhang, Q. & Cui, Y. Designing high-energy lithium–sulfur batteries. Chem. Soc. Rev. 45, 5605–5634 (2016).Article 
CAS 
PubMed 

Google Scholar 
Li, Z. et al. Lithiated metallic molybdenum disulfide nanosheets for high-performance lithium–sulfur batteries. Nat. Energy 8, 84–93 (2023).Article 
CAS 

Google Scholar 
Liu, J. et al. The TWh challenge: next generation batteries for energy storage and electric vehicles. Next Energy 1, 100015 (2023).Article 

Google Scholar 
Manthiram, A., Fu, Y. & Su, Y. S. Challenges and prospects of lithium–sulfur batteries. Acc. Chem. Res. 46, 1125–1134 (2013).Article 
CAS 
PubMed 

Google Scholar 
Zak, J. J., Kim, S. S., Laskowski, F. A. L. & See, K. A. An exploration of sulfur redox in lithium battery cathodes. J. Am. Chem. Soc. 144, 10119–10132 (2022).Article 
CAS 
PubMed 

Google Scholar 
Li, G. et al. Revisiting the role of polysulfides in lithium–sulfur batteries. Adv. Mater. 30, 1705590 (2018).Article 

Google Scholar 
He, Q. et al. Operando identification of liquid intermediates in lithium–sulfur batteries via transmission UV–vis spectroscopy. J. Electrochem. Soc. 167, 080508 (2020).Article 
CAS 

Google Scholar 
Zou, Q. & Lu, Y. C. Solvent-dictated lithium sulfur redox reactions: an operando UV–vis spectroscopic study. J. Phys. Chem. Lett. 7, 1518–1525 (2016).Article 
CAS 
PubMed 

Google Scholar 
Zheng, D. et al. Investigation of the Li–S battery mechanism by real-time monitoring of the changes of sulfur and polysulfide species during the discharge and charge. ACS Appl. Mater. Interfaces 9, 4326–4332 (2017).Article 
CAS 
PubMed 

Google Scholar 
Zhao, M. et al. A perspective toward practical lithium–sulfur batteries. ACS Cent. Sci. 6, 1095–1104 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhou, L. et al. Sulfur reduction reaction in lithium–sulfur batteries: mechanisms, catalysts, and characterization. Adv. Energy Mater. 12, 2202094 (2022).Article 
CAS 

Google Scholar 
Bonnaterre, R. & Cauquis, G. Spectrophotometric study of the electrochemical reduction of sulphur in organic media. J. Chem. Soc., Chem. Commun. 5, 293–294 (1972).
Google Scholar 
Martin, R. P., Doub, W. H., Roberts, J. L. & Sawyer, D. T. Electrochemical reduction of sulfur in aprotic solvents. Inorg. Chem. 12, 1921–1925 (1973).Article 
CAS 

Google Scholar 
Lu, Y.-C., He, Q. & Gasteiger, H. A. Probing the lithium–sulfur redox reactions: a rotating-ring disk electrode study. J. Phys. Chem. C 118, 5733–5741 (2014).Article 
CAS 

Google Scholar 
Barchasz, C. et al. Lithium/sulfur cell discharge mechanism: an original approach for intermediate species identification. Anal. Chem. 84, 3973–3980 (2012).Article 
CAS 
PubMed 

Google Scholar 
Cuisinier, M. et al. Sulfur speciation in Li–S batteries determined by operando X-ray absorption spectroscopy. J. Phys. Chem. Lett. 4, 3227–3232 (2013).Article 
CAS 

Google Scholar 
Walus, S. et al. Lithium/sulfur batteries upon cycling: structural modifications and species quantification by in situ and operando X-ray diffraction spectroscopy. Adv. Energy Mater. 5, 1500165 (2015).Article 

Google Scholar 
Wang, Q. et al. Direct observation of sulfur radicals as reaction media in lithium sulfur batteries. J. Electrochem. Soc. 162, A474–A478 (2015).Article 
CAS 

Google Scholar 
Hu, A. et al. Optimizing redox reactions in aprotic lithium–sulfur batteries. Adv. Energy Mater. 10, 2002180 (2020).Article 
CAS 

Google Scholar 
Wu, J. et al. Understanding the catalytic kinetics of polysulfide redox reactions on transition metal compounds in Li–S batteries. ACS Nano 16, 15734–15759 (2022).Article 
CAS 
PubMed 

Google Scholar 
Drvaric Talian, S. et al. Which process limits the operation of a Li–S system? Chem. Mater. 31, 9012–9023 (2019).Article 
CAS 

Google Scholar 
Peng, L. L. et al. A fundamental look at electrocatalytic sulfur reduction reaction. Nat. Catal. 3, 762–770 (2020).Article 
CAS 

Google Scholar 
Chien, Y.-C. et al. Correlations between precipitation reactions and electrochemical performance of lithium–sulfur batteries probed by operando scattering techniques. Chem 8, 1476–1492 (2022).Article 
CAS 

Google Scholar 
Luo, Y. et al. Direct monitoring of Li2S2 evolution and its influence on the reversible capacities of lithium–sulfur batteries. Angew. Chem. Int. Ed. 62, e202215802 (2023).Article 
CAS 

Google Scholar 
Park, C. et al. Structural and transport properties of Li/S battery electrolytes: role of the polysulfide species. J. Phys. Chem. C 123, 10167–10177 (2019).Article 
CAS 

Google Scholar 
Andersen, A. et al. Structure and dynamics of polysulfide clusters in a nonaqueous solvent mixture of 1,3-dioxolane and 1,2-dimethoxyethane. Chem. Mater. 31, 2308–2319 (2019).Article 
CAS 

Google Scholar 
Cheng, Q. et al. Full dissolution of the whole lithium sulfide family (Li2S8 to Li2S) in a safe eutectic solvent for rechargeable lithium–sulfur batteries. Angew. Chem. Int. Ed. 58, 5557–5561 (2019).Article 
CAS 

Google Scholar 
Chen, Z.-X. et al. Premature deposition of lithium polysulfide in lithium–sulfur batteries. J. Energy Chem. 82, 507–512 (2023).Article 
CAS 

Google Scholar 
Chen, Z.-X. et al. Toward practical high-energy-density lithium–sulfur pouch cells: a review. Adv. Mater. 34, 2201555 (2022).Article 
CAS 

Google Scholar 
Wang, L. et al. Ultralean electrolyte Li–S battery by avoiding gelation catastrophe. ACS Appl. Mater. Interfaces 14, 46457–46470 (2022).Article 
CAS 
PubMed 

Google Scholar 
Lee, C.-W. et al. Directing the lithium–sulfur reaction pathway via sparingly solvating electrolytes for high energy density batteries. ACS Cent. Sci. 3, 605–613 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pang, Q. et al. Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries. Nat. Energy 3, 783–791 (2018).Article 
CAS 

Google Scholar 
Hou, L.-P. et al. An encapsulating lithium-polysulfide electrolyte for practical lithium–sulfur batteries. Chem 8, 1083–1098 (2022).Article 
CAS 

Google Scholar 
Li, Z. et al. Correlating polysulfide solvation structure with electrode kinetics towards long-cycling lithium–sulfur batteries. Angew. Chem. Int. Ed. 62, e202309968 (2023).Article 
CAS 

Google Scholar 
Qi, X. et al. Electrochemical reactivation of dead Li2S for Li–S batteries in non-solvating electrolytes. Angew. Chem. Int. Ed. 62, e202218803 (2023).Article 
CAS 

Google Scholar 
Su, L. L. et al. Improving rate performance of encapsulating lithium-polysulfide electrolytes for practical lithium–sulfur batteries. Angew. Chem. Int. Ed. 63, e202318785 (2024).Article 
CAS 

Google Scholar 
He, M. et al. Flame-retardant and polysulfide-suppressed ether-based electrolytes for high-temperature Li–S batteries. ACS Appl. Mater. Interfaces 13, 38296–38304 (2021).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles