Spatial chemistry of citrus reveals molecules bactericidal to Candidatus Liberibacter asiaticus

Liu, Y., Heying, E. & Tanumihardjo, S. A. History, global distribution, and nutritional importance of citrus fruits. Compr. Rev. Food Sci. Food Saf. 11, 530–545 (2012).Article 

Google Scholar 
Alvarez, S., Rohrig, E., Solís, D. & Thomas, M. H. Citrus greening disease (Huanglongbing) in Florida: Economic impact, management and the potential for biological control. Agric. Res. 5, 109–118 (2016).Article 

Google Scholar 
Bové, J. M. Huanglongbing: A destructive, newly-emerging, century-old disease of citrus. J. Plant Pathol. 88, 7–37 (2006).
Google Scholar 
Lee, J. A. et al. Asymptomatic spread of Huanglongbing and implications for disease control. Proc. Natl. Acad. Sci. U. S. A. 112, 7605–7610 (2015).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Manjunath, K. L., Halbert, S. E., Ramadugu, C., Webb, S. & Lee, R. F. Detection of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and its importance in the management of citrus Huanglongbing in Florida. Phytopathology® 98, 387–396 (2008).Article 
PubMed 

Google Scholar 
Gottwald, T. R. Current epidemiological understanding of citrus Huanglongbing. Annu. Rev. Phytopathol. 48, 119–139 (2010).Article 
PubMed 

Google Scholar 
Boina, D. R. & Bloomquist, J. R. Chemical control of the Asian citrus psyllid and of Huanglongbing disease in citrus. Pest Manag. Sci. 71, 808–823 (2015).Article 
PubMed 

Google Scholar 
Ghosh, D. et al. Huanglongbing pandemic: Current challenges and emerging management strategies. Plants 12, 160 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Ginnan, N. A. et al. Disease-induced microbial shifts in citrus indicate microbiome-derived responses to Huanglongbing across the disease severity spectrum. Phytobiomes J. 4, 375–387 (2020).Article 

Google Scholar 
Zhong, Y. et al. Comparative transcriptome and iTRAQ proteome analyses of citrus root responses to Candidatus Liberibacter asiaticus infection. PLoS One 10, e0126973 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Li, B., Zhang, Y., Qiu, D., Francis, F. & Wang, S. Comparative proteomic analysis of sweet orange petiole provides insights into the development of Huanglongbing symptoms. Front. Plant Sci. 12, 656997 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Yang, C. et al. Metagenomic analysis reveals the mechanism for the observed increase in antibacterial activity of penicillin against uncultured bacteria Liberibacter asiaticus relative to oxytetracycline in planta. Antibiotics (Basel) 9, 874 (2020).Article 
PubMed 

Google Scholar 
Zhang, M. et al. Effective antibiotics against ‘Candidatus Liberibacter asiaticus’ in HLB-affected citrus plants identified via the graft-based evaluation. PLoS One 9, e111032 (2014).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Hu, J. & Wang, N. Evaluation of the spatiotemporal dynamics of oxytetracycline and its control effect against citrus Huanglongbing via trunk injection. Phytopathology 106, 1495–1503 (2016).Article 
PubMed 

Google Scholar 
Zuñiga, C. et al. Linking metabolic phenotypes to pathogenic traits among ‘Candidatus Liberibacter asiaticus’ and its hosts. NPJ Syst. Biol. Appl. 6, 24 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Schauer, N. & Fernie, A. R. Plant metabolomics: Towards biological function and mechanism. Trends Plant Sci. 11, 508–516 (2006).Article 
PubMed 

Google Scholar 
Macel, M., Van Dam, N. M. & Keurentjes, J. J. B. Metabolomics: The chemistry between ecology and genetics. Mol. Ecol. Resour. 10, 583–593 (2010).Article 
PubMed 

Google Scholar 
Yao, L. et al. Proteomic and metabolomic analyses provide insight into the off-flavour of fruits from citrus trees infected with ‘Candidatus Liberibacter asiaticus’. Hortic. Res. 6, 31 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Hijaz, F. M. et al. An HPLC-MS characterization of the changes in sweet orange leaf metabolite profile following infection by the bacterial pathogen Candidatus Liberibacter asiaticus. PLoS One 8, e79485 (2013).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Aksenov, A. A. et al. Detection of Huanglongbing disease using differential mobility spectrometry. Anal. Chem. 86, 2481–2488 (2014).Article 
PubMed 

Google Scholar 
Protsyuk, I. et al. 3D molecular cartography using LC-MS facilitated by Optimus and ’ili software. Nat. Protoc. 13, 134–154 (2018).Article 
PubMed 

Google Scholar 
Kapono, C. A. et al. Creating a 3D microbial and chemical snapshot of a human habitat. Sci. Rep. 8, 3669 (2018).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Floros, D. J. et al. Mass spectrometry based molecular 3D-cartography of plant metabolites. Front. Plant Sci. 8, 429 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Bouslimani, A. et al. Molecular cartography of the human skin surface in 3D. Proc. Natl. Acad. Sci. U. S. A. 112, E2120–E2129 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Wang, M. et al. Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat. Biotechnol. 34, 828–837 (2016).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Aron, A. T. et al. Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nat. Protoc. https://doi.org/10.1038/s41596-020-0317-5 (2020).Article 
PubMed 

Google Scholar 
Watrous, J. et al. Mass spectral molecular networking of living microbial colonies. Proc. Natl. Acad. Sci. U. S. A. 109, E1743–E1752 (2012).Article 
PubMed 
PubMed Central 

Google Scholar 
KEGG PATHWAY: Phenylpropanoid biosynthesis – Citrus sinensis (Valencia orange). https://www.genome.jp/kegg-bin/show_pathway?cit00940.Feng, G., Ai, X., Yi, H., Guo, W. & Wu, J. Genomic and transcriptomic analyses of Citrus sinensis varieties provide insights into Valencia orange fruit mastication trait formation. Hortic. Res. 8, 218 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Chen, Q. et al. Metabolomic analysis revealed distinct physiological responses of leaves and roots to Huanglongbing in a citrus rootstock. Int. J. Mol. Sci. 23, 9242 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Chin, E. L., Mishchuk, D. O., Breksa, A. P. & Slupsky, C. M. Metabolite signature of Candidatus Liberibacter asiaticus infection in two citrus varieties. J. Agric. Food Chem. 62, 6585–6591 (2014).Article 
PubMed 

Google Scholar 
Deng, H. et al. Comparative leaf volatile profiles of two contrasting mandarin cultivars against Liberibacter asiaticus infection illustrate Huanglongbing tolerance mechanisms. J. Agric. Food Chem. 69, 10869–10884 (2021).Article 
PubMed 

Google Scholar 
Padhi, E. M. T. et al. Metabolome and microbiome signatures in the roots of citrus affected by Huanglongbing. Phytopathology 109, 2022–2032 (2019).Article 
PubMed 

Google Scholar 
Blacutt, A. et al. An in vitro pipeline for screening and selection of citrus-associated microbiota with potential anti-‘Candidatus Liberibacter asiaticus’ properties. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.02883-19 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Irigoyen, S. et al. Plant hairy roots enable high throughput identification of antimicrobials against Candidatus Liberibacter spp. Nat. Commun. 11, 5802 (2020).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Li, J. et al. The in planta effective concentration of oxytetracycline against ’ Liberibacter asiaticus’ for suppression of citrus Huanglongbing. Phytopathology 109, 2046–2054 (2019).Article 
PubMed 

Google Scholar 
Hu, J., Jiang, J. & Wang, N. Control of CITRUS Huanglongbing via trunk injection of plant defense activators and antibiotics. Phytopathology 108, 186–195 (2018).Article 
PubMed 

Google Scholar 
Munir, S. et al. Unraveling the metabolite signature of citrus showing defense response towards Candidatus Liberibacter asiaticus after application of endophyte Bacillus subtilis L1–21. Microbiol. Res. 234, 126425 (2020).Article 
PubMed 

Google Scholar 
Hung, W.-L. & Wang, Y. A targeted mass spectrometry-based metabolomics approach toward the understanding of host responses to Huanglongbing disease. J. Agric. Food Chem. 66, 10651–10661 (2018).Article 
PubMed 

Google Scholar 
Suh, J. H., Tang, X., Zhang, Y., Gmitter, F. G. Jr. & Wang, Y. Metabolomic analysis provides new insight into tolerance of Huanglongbing in Citrus. Front. Plant Sci. 12, 710598 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Nuutila, A. M., Kammiovirta, K. & Oksman-Caldentey, K.-M. Comparison of methods for the hydrolysis of flavonoids and phenolic acids from onion and spinach for HPLC analysis. Food Chem. 76, 519–525. https://doi.org/10.1016/s0308-8146(01)00305-3 (2002).Article 

Google Scholar 
Pourcel, L., Routaboul, J., Cheynier, V., Lepiniec, L. & Debeaujon, I. Flavonoid oxidation in plants: from biochemical properties to physiological functions. Trends Plant Sci. 12, 29–36. https://doi.org/10.1016/j.tplants.2006.11.006 (2007).Article 
PubMed 

Google Scholar 
Mandadi, K. et al. Hairy roots to the rescue: Speeding up discovery for HLB Management. Citrograph 11, 20–22 (2020).
Google Scholar 
Kennedy, J. P. et al. A perspective on current therapeutic molecule screening methods against ’ Liberibacter asiaticus’, the presumed causative agent of citrus Huanglongbing. Phytopathology 113, 1171–1179 (2023).Article 
PubMed 

Google Scholar 
Zhang, M. et al. Field evaluation of integrated management for mitigating citrus Huanglongbing in Florida. Front. Plant Sci. 9, 1890 (2018).Article 
PubMed 

Google Scholar 
Davis, M. J., Mondal, S. N., Chen, H., Rogers, M. E. & Brlansky, R. H. Co-cultivation of ‘Candidatus Liberibacter asiaticus’ with actinobacteria from citrus with Huanglongbing. Plant Dis. 92, 1547–1550 (2008).Article 
PubMed 

Google Scholar 
Leonard, M. T., Fagen, J. R., Davis-Richardson, A. G., Davis, M. J. & Triplett, E. W. Complete genome sequence of Liberibacter crescens BT-1. Stand. Genom. Sci. 7, 271–283 (2012).Article 

Google Scholar 
Barnett, M. J., Solow-Cordero, D. E. & Long, S. R. A high-throughput system to identify inhibitors of Liberibacter asiaticus transcription regulators. Proc. Natl. Acad. Sci. U. S. A. 116, 18009–18014 (2019).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Jain, M. et al. Is a cultured surrogate for functional genomics of uncultured pathogenic ‘Liberibacter’ spp. and is naturally competent for transformation. Phytopathology 109, 1811–1819 (2019).Article 
PubMed 

Google Scholar 
dos Santos, W. D. et al. Soybean (Glycine max) root lignification induced by ferulic acid. The possible mode of action. J. Chem. Ecol. 34, 1230–1241 (2008).Article 
PubMed 

Google Scholar 
Cushnie, T. P. T. & Lamb, A. J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 26, 343–356 (2005).Article 
PubMed 
PubMed Central 

Google Scholar 
Ou, S. & Kwok, K.-C. Ferulic acid: Pharmaceutical functions, preparation and applications in foods. J. Sci. Food Agric. 84, 1261–1269 (2004).Article 

Google Scholar 
Paczkowski, J. E. et al. Flavonoids suppress virulence through allosteric inhibition of quorum-sensing receptors. J. Biol. Chem. 292, 4064–4076 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Borges, A., Saavedra, M. J. & Simões, M. The activity of ferulic and gallic acids in biofilm prevention and control of pathogenic bacteria. Biofouling 28, 755–767 (2012).Article 
PubMed 

Google Scholar 
Li, A.-P., He, Y.-H., Zhang, S.-Y. & Shi, Y.-P. Antibacterial activity and action mechanism of flavonoids against phytopathogenic bacteria. Pestic. Biochem. Physiol. 188, 105221 (2022).Article 
PubMed 

Google Scholar 
Borges, A., Ferreira, C., Saavedra, M. J. & Simões, M. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb. Drug Resist. 19, 256–265 (2013).Article 
PubMed 

Google Scholar 
Archer, L., Kunwar, S., Alferez, F., Batuman, O. & Albrecht, U. Trunk injection of oxytetracycline for Huanglongbing management in mature grapefruit and sweet orange trees. Phytopathology 113, 1010–1021 (2023).Article 
PubMed 

Google Scholar 
Blaustein, R. A., Lorca, G. L. & Teplitski, M. Challenges for managing Candidatus Liberibacter spp. (Huanglongbing disease pathogen): Current control measures and future directions. Phytopathology 108, 424–435 (2018).Article 
PubMed 

Google Scholar 
Gardner, C. L. et al. Assessment of unconventional antimicrobial compounds for the control of ‘Candidatus Liberibacter asiaticus’, the causative agent of citrus greening disease. Sci. Rep. 10, 5395 (2020).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Archer, L., Qureshi, J. & Albrecht, U. Efficacy of trunk injected imidacloprid and oxytetracycline in managing huanglongbing and Asian citrus psyllid in infected sweet orange (Citrus sinensis) trees. Collect. FAO Agric. 12, 1592 (2022).
Google Scholar 
Xia, J. & Wishart, D. S. Using MetaboAnalyst 3.0 for comprehensive metabolomics data analysis. Curr. Protoc. Bioinform. 55, 14.10.1-14.10.91 (2016).Article 

Google Scholar 
Hackstadt, A. J. & Hess, A. M. Filtering for increased power for microarray data analysis. BMC Bioinform. https://doi.org/10.1186/1471-2105-10-11 (2009).Article 

Google Scholar 
Wold, S., Sjöström, M. & Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 58, 109–130 (2001).Article 

Google Scholar 
Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).Article 

Google Scholar 
Nothias, L. F. et al. Feature-based molecular networking in the GNPS analysis environment. Nat. Methods https://doi.org/10.1101/812404 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Kyselka, J. et al. Antifungal polyamides of hydroxycinnamic acids from sunflower bee pollen. J. Agric. Food Chem. 66, 11018–11026. https://doi.org/10.1021/acs.jafc.8b03976 (2018).Article 
PubMed 

Google Scholar 
Schellenberger, J. et al. Quantitative prediction of cellular metabolism with constraint-based models: The COBRA Toolbox v2.0. Nat. Protoc. 6, 1290–1307 (2011).Article 
PubMed 
PubMed Central 

Google Scholar 
Zheng, Z. et al. Unusual five copies and dual forms of nrdB in ‘Candidatus Liberibacter asiaticus’: Biological implications and PCR detection application. Sci. Rep. 6, 39020 (2016).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Mafra, V. et al. Reference genes for accurate transcript normalization in citrus genotypes under different experimental conditions. PLoS One 7, e31263 (2012).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles