Deposition temperature-mediated growth of helically shaped polymers and chevron-type graphene nanoribbons from a fluorinated precursor

Son, Y.-W., Cohen, M. L. & Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006).Article 
PubMed 

Google Scholar 
Han, W., Kawakami, R. K., Gmitra, M. & Fabian, J. Graphene spintronics. Nat. Nanotechnol. 9, 794–807 (2014).Article 
CAS 
PubMed 

Google Scholar 
Chen, Z., Lin, Y. M., Rooks, M. J. & Avouris, P. Graphene nano-ribbon electronics. Phys. E: Low.-Dimensional Syst. Nanostruct. 40, 228–232 (2007).Article 
CAS 

Google Scholar 
Celis, A. et al. Graphene nanoribbons: Fabrication, properties and devices. J. Phys. D: Appl. Phys. 49, 143001 (2016).Article 

Google Scholar 
Tao, C. et al. Spatially resolving edge states of chiral graphene nanoribbons. Nat. Phys. 7, 616–620 (2011).Article 
CAS 

Google Scholar 
Gu, Y., Qiu, Z. & Mullen, K. Nanographenes and graphene nanoribbons as multitalents of present and Future Materials Science. J. Am. Chem. Soc. 144, 11499–11524 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, Z., Narita, A. & Mullen, K. Graphene nanoribbons: on-surface synthesis and integration into electronic devices. Adv. Mater. 32, 2001893 (2020).Article 
CAS 

Google Scholar 
Wang, H. et al. Graphene nanoribbons for quantum electronics. Nat. Rev. Phys. 3, 791–802 (2021).Article 
CAS 

Google Scholar 
Ma, C. et al. Seamless staircase electrical contact to semiconducting graphene nanoribbons. Nano Lett. 17, 6241–6247 (2017).Article 
CAS 
PubMed 

Google Scholar 
Ma, C. et al. Controllable conversion of quasi-freestanding polymer chains to graphene nanoribbons. Nat. Commun. 8, 14815 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cai, J. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010).Article 
CAS 
PubMed 

Google Scholar 
Linden, S. et al. Electronic structure of spatially aligned graphene nanoribbons on Au(788). Phys. Rev. Lett. 108, 216801 (2012).Article 
CAS 
PubMed 

Google Scholar 
Teeter, J. D. et al. Epitaxial growth of aligned atomically precise chevron graphene nanoribbons on Cu(111). Chem. Commun. (Camb.) 53, 8463–8466 (2017).Article 
CAS 
PubMed 

Google Scholar 
Panighel, M. et al. Stabilizing edge fluorination in graphene nanoribbons. ACS Nano 14, 11120–11129 (2020).Article 
CAS 
PubMed 

Google Scholar 
Bronner, C. et al. Aligning the band gap of graphene nanoribbons by monomer doping. Angew. Chem. Int. Ed. 125, 4422–4425 (2013).Article 

Google Scholar 
Cai, J. et al. Graphene nanoribbon heterojunctions. Nat. Nanotechnol. 9, 896–900 (2014).Article 
CAS 
PubMed 

Google Scholar 
Teeter, J. D. et al. On‐surface synthesis and spectroscopic characterization of laterally extended chevron graphene nanoribbons. ChemPhysChem 20, 2281–2285 (2019).Article 
CAS 
PubMed 

Google Scholar 
Chen, Z. et al. Synthesis of graphene nanoribbons by ambient-pressure chemical vapor deposition and device integration. J. Am. Chem. Soc. 138, 15488–15496 (2016).Article 
CAS 
PubMed 

Google Scholar 
Vo, T. H., Shekhirev, M., Lipatov, A., Korlacki, R. A. & Sinitskii, A. Bulk properties of solution-synthesized chevron-like graphene nanoribbons. Faraday Discuss 173, 105–113 (2014).CAS 
PubMed 

Google Scholar 
Liu, X. et al. Chevron-type graphene nanoribbons with a reduced energy band gap: Solution synthesis, scanning tunneling microscopy and electrical characterization. Nano Res. 13, 1713–1722 (2020).Article 

Google Scholar 
Pour, M. M. et al. Laterally extended atomically precise graphene nanoribbons with improved electrical conductivity for efficient gas sensing. Nat. Commun. 8, 820 (2017).Article 

Google Scholar 
Han, M. Y., Özyilmaz, B., Zhang, Y. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).Article 
PubMed 

Google Scholar 
Palma, C.-A. et al. Sub-nanometer width armchair graphene nanoribbon energy Gap atlas. J. Phys. Chem. Lett. 6, 3228–3235 (2015).Nguyen, G. D. et al. Bottom-Up Synthesis of N = 13 Sulfur-Doped Graphene Nanoribbons. J. Phys. Chem. C. 120, 2684–2687 (2016).Article 
CAS 

Google Scholar 
Pawlak, R. et al. Bottom-up Synthesis of Nitrogen-Doped Porous Graphene Nanoribbons. J. Am. Chem. Soc. 142, 12568–12573 (2020).Article 
CAS 
PubMed 

Google Scholar 
Kawai, S. et al. Multiple heteroatom substitution to graphene nanoribbon. Sci. Adv. 4, eaar7181 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Cao, T., Zhao, F. & Louie, S. G. Topological phases in graphene nanoribbons: junction states, spin centers, and quantum spin chains. Phys. Rev. Lett. 119, 076401 (2017).Article 
PubMed 

Google Scholar 
Lee, Y. L., Zhao, F., Cao, T., Ihm, J. & Louie, S. G. Topological phases in cove-edged and chevron graphene nanoribbons: geometric structures, Z2 invariants, and junction states. Nano Lett. 18, 7247–7253 (2018).Article 
CAS 
PubMed 

Google Scholar 
Rizzo, D. J. et al. Topological band engineering of graphene nanoribbons. Nature 560, 204–208 (2018).Article 
CAS 
PubMed 

Google Scholar 
Joost, J.-P., Jauho, A.-P. & Bonitz, M. Correlated topological states in graphene nanoribbon heterostructures. Nano Lett. 19, 9045–9050 (2019).Article 
CAS 
PubMed 

Google Scholar 
Sun, Q. et al. Coupled spin states in armchair graphene nanoribbons with asymmetric zigzag edge extensions. Nano Lett. 20, 6429–6436 (2020).Article 
CAS 
PubMed 

Google Scholar 
Vo, T. H. et al. Nitrogen-doping induced self-assembly of graphene nanoribbon-based two-dimensional and three-dimensional metamaterials. Nano Lett. 15, 5770–5777 (2015).Article 
CAS 
PubMed 

Google Scholar 
Hayashi, H. et al. Experimental and theoretical investigations of surface-assisted graphene nanoribbon synthesis featuring carbon–fluorine bond cleavage. ACS Nano 11, 6204–6210 (2017).Article 
CAS 
PubMed 

Google Scholar 
Fan, Q. et al. Biphenylene network: A nonbenzenoid carbon allotrope. Science 372, 852–856 (2021).Article 
CAS 
PubMed 

Google Scholar 
Amsharov, K. Y., Kabdulov, M. A. & Jansen, M. Facile Bucky-bowl synthesis by regiospecific cove-region closure by HF elimination. Angew. Chem. Int. Ed. 51, 4594–4597 (2012).Article 
CAS 

Google Scholar 
Sharapa, D., Steiner, A.-K. & Amsharov, K. The Mechanism of Cyclodehydrofluorination on γ-Alumina. Phys. Status Solidi B 255, 1800189 (2018).Article 

Google Scholar 
Kolmer, M. et al. Fluorine-programmed nanozipping to tailored nanographenes on rutile TiO2 surfaces. Science 363, 57–60 (2019).Article 
CAS 
PubMed 

Google Scholar 
Kolmer, M. et al. Rational synthesis of atomically precise graphene nanoribbons directly on metal oxide surfaces. Science 369, 571–575 (2020).Article 
CAS 
PubMed 

Google Scholar 
Zuzak, R. et al. On-surface synthesis of nanographenes and graphene nanoribbons on titanium dioxide. ACS Nano 17, 2580–2587 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Vladimirova, M. et al. Supramolecular self-assembly and selective step decoration on the Au(111) surface. Europhys. Lett. 56, 254–260 (2001).Article 
CAS 

Google Scholar 
Ma, C. et al. Step edge-mediated assembly of periodic arrays of long graphene nanoribbons on Au(111). Chem. Commun. 55, 11848–11851 (2019).Article 
CAS 

Google Scholar 
Bronner, C. et al. Iodine versus bromine functionalization for bottom-up graphene nanoribbon growth: role of diffusion. J. Phys. Chem. C 121, 18490–18495 (2017).Article 
CAS 

Google Scholar 
Teeter, J. D. et al. Dense monolayer films of atomically precise graphene nanoribbons on metallic substrates enabled by direct contact transfer of molecular precursors. Nanoscale 9, 18835–18844 (2017).Article 
CAS 
PubMed 

Google Scholar 
Clark, D. T., Kilcast, D., Adams, D. B. & Musgrave, W. K. R. An ESCA study of the molecular core binding energies of the fluorobenzenes. J. Electron Spectrosc. Relat. Phenom. 1, 227–250 (1972–1973).Di Giovannantonio, M. et al. On-surface growth dynamics of graphene nanoribbons: the role of halogen functionalization. ACS Nano 12, 74–81 (2018).Article 
PubMed 

Google Scholar 
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).Article 
CAS 
PubMed 

Google Scholar 
Dion, M., Rydberg, H., Schröder, E., Langreth, D. C. & Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 92, 246401 (2004).Article 
CAS 
PubMed 

Google Scholar 
Tersoff, J. & Hamann, D. R. Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles