Multipartite network analysis to identify environmental and genetic associations of metabolic syndrome in the Korean population

Alberti, K. G. et al. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120(16), 1640–1645 (2009).Article 
PubMed 

Google Scholar 
Wan, J. Y. et al. Genome-wide association analysis of metabolic syndrome quantitative traits in the GENNID multiethnic family study. Diabetol. Metab. Syndr. 13(1), 59 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Ranasinghe, P. et al. Prevalence and trends of metabolic syndrome among adults in the Asia–Pacific Region: A systematic review. BMC Public Health 17(1), 101 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Huh, J. H. et al. Metabolic syndrome fact sheet 2021: Executive report. CardioMetabolic Syndrome J. 1(2), 125–134 (2021).Article 

Google Scholar 
Mottillo, S. et al. The metabolic syndrome and cardiovascular risk: A systematic review and meta-analysis. J. Am. Coll. Cardiol. 56(14), 1113–1132 (2010).Article 
PubMed 

Google Scholar 
Kaur, J. A comprehensive review on metabolic syndrome. Cardiol. Res. Pract. 2014, 943162 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Esposito, K. et al. Metabolic syndrome and risk of cancer: A systematic review and meta-analysis. Diabetes Care 35(11), 2402–2411 (2012).Article 
PubMed 
PubMed Central 

Google Scholar 
Chen, X. et al. Genetic and environmental influences on the correlations between traits of metabolic syndrome and CKD. Clin. J. Am. Soc. Nephrol. 14(11), 1590–1596 (2019).Article 
MathSciNet 
PubMed 
PubMed Central 

Google Scholar 
Zhu, Y. et al. Susceptibility loci for metabolic syndrome and metabolic components identified in Han Chinese: A multi-stage genome-wide association study. J. Cell. Mol. Med. 21(6), 1106–1116 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Musani, S. K. et al. Heritability of the severity of the metabolic syndrome in whites and blacks in 3 large cohorts. Circulat. Cardiovasc. Genet. 10(2), e001621 (2017).Article 

Google Scholar 
Povel, C. M. et al. Genetic variants and the metabolic syndrome: A systematic review. Obes. Rev. 12(11), 952–967 (2011).Article 
PubMed 

Google Scholar 
Carty, C. L. et al. Analysis of metabolic syndrome components in > 15,000 African Americans identifies pleiotropic variants: Results from the population architecture using genomics and epidemiology study. Circ. Cardiovasc. Genet. 7(4), 505–513 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Tekola-Ayele, F. et al. Genome-wide association study identifies African-ancestry specific variants for metabolic syndrome. Mol. Genet. Metab. 116(4), 305–313 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Oh, S.-W. et al. Genome-wide association study of metabolic syndrome in Korean populations. PloS One 15(1), e0227357 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Rung, J. et al. Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia. Nat. Genet. 41(10), 1110–1115 (2009).Article 
PubMed 

Google Scholar 
Lanktree, M. B. & Hegele, R. A. Metabolic syndrome. In Genomic and Precision Medicine 283–299 (Elsevier, 2017).Chapter 

Google Scholar 
Teslovich, T. M. et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466(7307), 707–713 (2010).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Coltell, O. et al. Genome-wide association study (GWAS) on bilirubin concentrations in subjects with metabolic syndrome: Sex-specific gwas analysis and gene-diet interactions in a mediterranean population. Nutrients 11(1), 90 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Lee, H.-S., Kim, Y. & Park, T. New common and rare variants influencing metabolic syndrome and its individual components in a Korean Population. Sci. Rep. 8(1), 5701 (2018).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Kraja, A. T. et al. Pleiotropic genes for metabolic syndrome and inflammation. Mol. Genet. Metab. 112(4), 317–338 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Zeng, Y. et al. GWA-based pleiotropic analysis identified potential SNPs and genes related to type 2 diabetes and obesity. J. Hum. Genet. 66(3), 297–306 (2021).Article 
PubMed 

Google Scholar 
Zhang, Y. et al. QTL-based association analyses reveal novel genes influencing pleiotropy of metabolic syndrome (MetS). Obesity 21(10), 2099–2111 (2013).Article 
PubMed 

Google Scholar 
Al-Qawasmeh, R. H. & Tayyem, R. F. Dietary and lifestyle risk factors and metabolic syndrome: Literature review. Curr. Res. Nutr. Food Sci. J. 6(3), 594–608 (2018).Article 

Google Scholar 
Takahara, M. & Shimomura, I. Metabolic syndrome and lifestyle modification. Rev. Endocr. Metab. Disord. 15, 317–327 (2014).Article 
PubMed 

Google Scholar 
de Lorgeril, M. Commentary on the clinical management of metabolic syndrome: Why a healthy lifestyle is important. BMC Med. 10, 1–3 (2012).Article 

Google Scholar 
Deng, Y.-Y. et al. Combined influence of eight lifestyle factors on metabolic syndrome incidence: A prospective cohort study from the MECH-HK Study. Nutrients 16(4), 547 (2024).Article 
PubMed 
PubMed Central 

Google Scholar 
Magueresse-Battistoni, L., Vidal, H. & Naville, D. Environmental pollutants and metabolic disorders: The multi-exposure scenario of life. Front. Endocrinol. 9, 413568 (2018).Article 

Google Scholar 
Ghosh, S. et al. Contribution of environmental, genetic and epigenetic factors to obesity-related metabolic syndrome. Nucleus 66(2), 215–237 (2023).Article 

Google Scholar 
Paik, J.K., et al. Dietary protein to carbohydrate ratio and incidence of metabolic syndrome in Korean adults based on a long-term prospective community-based cohort. Nutrients. 12(11) (2020).Bosy-Westphal, A. et al. Common familial influences on clustering of metabolic syndrome traits with central obesity and insulin resistance: The Kiel obesity prevention study. Int. J. Obesity 31(5), 784–790 (2007).Article 

Google Scholar 
Adamo, K.B. & F. Tesson. Gene-environment interaction and the metabolic syndrome. in Novartis Foundation Symposium. 2008. (John Wiley, 1999).Park, Y. S. et al. Association between lifestyle factors and the risk of metabolic syndrome in the South Korea. Sci. Rep. 12(1), 13356 (2022).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Ordovas, J. M. & Shen, J. Gene-environment interactions and susceptibility to metabolic syndrome and other chronic diseases. J. Periodontol. 79(8S), 1508–1513 (2008).Article 
PubMed 
PubMed Central 

Google Scholar 
Maistry, T. et al. Gene-environmental interaction and the metabolic syndrome in Asian Indians with insulin resistance. Atherosclerosis 275, e183 (2018).Article 

Google Scholar 
Darabos, C., Harmon, S. H. & Moore, J. H. Using the bipartite human phenotype network to reveal pleiotropy and epistasis beyond the gene. In Biocomputing 2014 188–199 (World Scientific, 2014).
Google Scholar 
Prone-Olazabal, D., Davies, I. & González-Galarza, F. F. Metabolic syndrome: An overview on its genetic associations and gene–diet interactions. Metab. Syndrome Relat. Disord. 21(10), 545–560 (2023).Article 

Google Scholar 
Benyamin, B. et al. Are there common genetic and environmental factors behind the endophenotypes associated with the metabolic syndrome?. Diabetologia 50, 1880–1888 (2007).Article 
PubMed 

Google Scholar 
Zhou, T. et al. Bipartite network projection and personal recommendation. Phys. Rev. E 76(4), 046115 (2007).Article 
ADS 
MathSciNet 

Google Scholar 
Ferreri, L., M. Ivaldi, & M.D.L. Giacobini. Tripartite Networks: A first exploratory step towards the understanding of multipartite networks. in NETSCI12 The International School and Conference on Network Science. (2012).Phillips, C. A. et al. On finding and enumerating maximal and maximum k-partite cliques in k-partite graphs. Algorithms 12(1), 23 (2019).Article 
MathSciNet 
PubMed 
PubMed Central 

Google Scholar 
Zhang, Y., E.D. Kolaczyk, & B.D. Spencer. Estimating network degree distributions under sampling: An inverse problem, with applications to monitoring social media networks. (2015).Diestel, R. The basics. In Graph Theory 1–34 (Springer, 2017).Chapter 

Google Scholar 
Koc, I., Yuksel, I. & Caetano-Anollés, G. Metabolite-centric reporter pathway and tripartite network analysis of Arabidopsis under cold stress. Front. Bioeng. Biotechnol. 6, 121 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Cho, Y. S. et al. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat. Genet. 41(5), 527–534 (2009).Article 
ADS 
PubMed 

Google Scholar 
Expert Panel on Detection, E. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). JAMA. 285(19), 2486–2497 (2001).Article 

Google Scholar 
Grundy, S. M. et al. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Circulation 112(17), 2735–2752 (2005).Article 
PubMed 

Google Scholar 
Paik, J. K. et al. Dietary protein to carbohydrate ratio and incidence of metabolic syndrome in Korean adults based on a long-term prospective community-based cohort. Nutrients 12(11), 3274 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Ahn, Y. et al. Validation and reproducibility of food frequency questionnaire for Korean genome epidemiologic study. Eur. J. Clin. Nutr. 61(12), 1435–1441 (2007).Article 
PubMed 

Google Scholar 
Society, K.N. Computer aided nutritional analysis program for professionals. The Korean Nutrition Society Seoul. (2011).Kim, Y., Han, B.-G., K. Group. Cohort profile: The Korean genome and epidemiology study (KoGES) consortium. Int. J. Epidemiol. 46(2), e20 (2017).Article 
PubMed 

Google Scholar 
Zhang, Y., Kolaczyk, E. D. & Spencer, B. D. Estimating network degree distributions under sampling: An inverse problem, with applications to monitoring social media networks. Ann. Appl. Stat. 9(1), 166–199 (2015).Article 
MathSciNet 

Google Scholar 
Abdallah, M. & Hung, C.-N. Neighbor connectivity of the alternating group graph. J. Interconnect. Netw. 21(03), 2150014 (2021).Article 

Google Scholar 
Diestel, R. Graph Theory 3rd ed. Graduate texts in mathematics. 173, 33 (2005).Zhang, J. & Y. Luo. Degree centrality, betweenness centrality, and closeness centrality in social network. in 2017 2nd International Conference on Modelling, Simulation and Applied Mathematics (MSAM2017). (Atlantis Press, 2017).Newman, M.E. Networks—An Introduction, 124–125. (Oxford University Press, 2010).Neal, Z. The backbone of bipartite projections: Inferring relationships from co-authorship, co-sponsorship, co-attendance and other co-behaviors. Social Netw. 39, 84–97 (2014).Article 

Google Scholar 
Cann, T. J. B., Weaver, I. S. & Williams, H. T. P. Is it correct to project and detect? How weighting unipartite projections influences community detection. Netw. Sci. 8(S1), S145–S163 (2020).Article 

Google Scholar 
Sugiyama, M. G. & Agellon, L. B. Sex differences in lipid metabolism and metabolic disease risk. Biochem. Cell Biol. 90(2), 124–141 (2012).Article 
PubMed 

Google Scholar 
Mauvais-Jarvis, F. Sex differences in metabolic homeostasis, diabetes, and obesity. Biol. Sex Differences 6(1), 14 (2015).Article 

Google Scholar 
Kanai, M. et al. Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases. Nat. Genet. 50(3), 390–400 (2018).Article 
MathSciNet 
PubMed 

Google Scholar 
Noordam, R. et al. Multi-ancestry sleep-by-SNP interaction analysis in 126,926 individuals reveals lipid loci stratified by sleep duration. Nat. Commun. 10(1), 5121 (2019).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Li, C. et al. Variants identified by hepatocellular carcinoma and chronic hepatitis B virus infection susceptibility GWAS associated with survival in HBV-related hepatocellular carcinoma. PLoS One 9(7), e101586 (2014).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Spracklen, C. N. et al. Association analyses of East Asian individuals and trans-ancestry analyses with European individuals reveal new loci associated with cholesterol and triglyceride levels. Hum. Mol. Genet. 26(9), 1770–1784 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Lee, J. S., Cheong, H. S. & Shin, H. D. Prediction of cholesterol ratios within a Korean population. R. Soc. Open Sci. 5(1), 171204 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Discovery and refinement of loci associated with lipid levels. Nat. Genet. 45(11), 1274–1283 (2013).Li, D. et al. Progressive effects of single-nucleotide polymorphisms on 16 phenotypic traits based on longitudinal data. Genes Genom. 42(4), 393–403 (2020).Article 

Google Scholar 
Edmondson, A. C. et al. Dense genotyping of candidate gene loci identifies variants associated with high-density lipoprotein cholesterol. Circ. Cardiovasc. Genet. 4(2), 145–155 (2011).Article 
PubMed 
PubMed Central 

Google Scholar 
Kathiresan, S. et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat. Genet. 40(2), 189–197 (2008).Article 
PubMed 
PubMed Central 

Google Scholar 
Shin, J.-A. et al. Metabolic syndrome as a predictor of type 2 diabetes, and its clinical interpretations and usefulness. J. Diabetes Investig. 4(4), 334–343 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
Shang, X. et al. Dietary protein from different food sources, incident metabolic syndrome and changes in its components: An 11-year longitudinal study in healthy community-dwelling adults. Clin. Nutr. 36(6), 1540–1548 (2017).Article 
MathSciNet 
PubMed 

Google Scholar 
Freiberg, M. S. et al. Alcohol consumption and the prevalence of the metabolic syndrome in the US: A cross-sectional analysis of data from the Third National Health and Nutrition Examination Survey. Diabetes care 27(12), 2954–2959 (2004).Article 
PubMed 

Google Scholar 
Stranges, S. et al. Relationship of alcohol drinking pattern to risk of hypertension: A population-based study. Hypertension 44(6), 813–819 (2004).Article 
PubMed 

Google Scholar 
Magis, D., Jandrain, B. & Scheen, A. Alcohol, insulin sensitivity and diabetes. Revue Medicale de Liege 58(7–8), 501–507 (2003).PubMed 

Google Scholar 
Yi, Y. & An, J. Sex differences in risk factors for metabolic syndrome in the Korean Population. Int. J. Environ. Res. Public Health. 17(24), 9513 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Julibert, A. et al. Dietary fat intake and metabolic syndrome in older adults. Nutrients 11(8), 1901 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Silventoinen, K. et al. Educational inequalities in the metabolic syndrome and coronary heart disease among middle-aged men and women. Int. J. Epidemiol. 34(2), 327–334 (2005).Article 
PubMed 

Google Scholar 
Dallongeville, J. et al. Household income is associated with the risk of metabolic syndrome in a sex-specific manner. Diabetes Care 28(2), 409–415 (2005).Article 
PubMed 

Google Scholar 
Kanai, M. et al. Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases. Nat. Genet. 50, 390–400 (2018).Article 
PubMed 

Google Scholar 
Spracklen, C. N. et al. Association analyses of East Asian individuals and trans-ancestry analyses with European individuals reveal new loci associated with cholesterol and triglyceride levels. Hum. Mol. Genet. 27(6), 1122–1122 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Adamo, K.B. & F. Tesson. Gene–environment interaction and the metabolic syndrome. in Genetic Effects on Environmental Vulnerability to Disease, 103–121 (2008).Jeon, S. et al. Structural equation modeling for hypertension and type 2 diabetes based on multiple SNPs and multiple phenotypes. PLoS One 14(9), e0217189 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Lutz, S.M. & J.E. Hokanson. Mediation analysis in genome-wide association studies: current perspectives. Open Access Bioinform. 1–5 (2015).Kim, H. et al. The retinoic acid synthesis gene ALDH1a2 is a candidate tumor suppressor in prostate cancer. Cancer Res. 65(18), 8118–8124 (2005).Article 
PubMed 

Google Scholar 
Liu, Y. et al. The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat. Genet. 49(8), 1211–1218 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Sanders, S. et al. The presence and potential role of ALDH1A2 in the glioblastoma microenvironment. Cells 10(9), 2485 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Hu, Z. et al. New loci associated with chronic hepatitis B virus infection in Han Chinese. Nat. Genet. 45(12), 1499–1503 (2013).Article 
PubMed 

Google Scholar 
Zuo, X.-B. et al. Variants in TNFSF4, TNFAIP3, TNIP1, BLK, SLC15A4 and UBE2L3 interact to confer risk of systemic lupus erythematosus in Chinese population. Rheumatol. Int. 34, 459–464 (2014).Article 
PubMed 

Google Scholar 
Wang, S. et al. A functional haplotype of UBE2L3 confers risk for systemic lupus erythematosus. Genes Immunity 13(5), 380–387 (2012).Article 
PubMed 

Google Scholar 
Shen, M. et al. ACAA2 is a novel molecular indicator for cancers with neuroendocrine phenotype. Br. J. Cancer 129(11), 1818–1828 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Valette, K. et al. Prioritization of candidate causal genes for asthma in susceptibility loci derived from UK Biobank. Commun. Biol. 4(1), 700 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Lafarge, T. et al. Genome-wide association analysis for heat tolerance at flowering detected a large set of genes involved in adaptation to thermal and other stresses. PLOS ONE 12(2), e0171254 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Chen, L. et al. Genome-wide assessment of genetic risk for systemic lupus erythematosus and disease severity. Hum. Mol. Genet. 29(10), 1745–1756 (2020).Article 
MathSciNet 
PubMed 
PubMed Central 

Google Scholar 
Chen, Z.-Q. et al. Leveraging breeding programs and genomic data in Norway spruce (Picea abies L. Karst) for GWAS analysis. Genome Biol. 22, 1–30 (2021).
Google Scholar 
Yan, Q. et al. Genome-wide association study of brain amyloid deposition as measured by Pittsburgh Compound-B (PiB)-PET imaging. Mol. Psychiatry 26(1), 309–321 (2021).Article 
PubMed 

Google Scholar 

Hot Topics

Related Articles