Competing nucleation pathways in nanocrystal formation

Petkova, A. T. et al. Self-propagating, molecular-level polymorphism in Alzheimer’s ß-amyloid fibrils. Science 307, 262–265 (2005).Article 
CAS 
PubMed 

Google Scholar 
Close, W. et al. Physical basis of amyloid fibril polymorphism. Nat. Commun. 9, 1–7 (2018).Article 
CAS 

Google Scholar 
Fändrich, M. et al. Amyloid fibril polymorphism: a challenge for molecular imaging and therapy. J. Intern. Med. 283, 218–237 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Zhang, L. L., Yang, S., Wei, W. & Zhang, X. J. Genetic polymorphisms affect efficacy and adverse drug reactions of DMARDs in rheumatoid arthritis. Pharmacogenet. Genomics 24, 531 (2014).Article 
CAS 
PubMed 

Google Scholar 
Morissette, S. L., Soukasene, S., Levinson, D., Cima, M. J. & Almarsson, Ö. Elucidation of crystal form diversity of the HIV protease inhibitor ritonavir by high-throughput crystallization. Proc. Natl. Acad. Sci. USA 100, 2180–2184 (2003).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sosso, G. C. et al. Crystal nucleation in liquids: open questions and future challenges in molecular dynamics simulations. Chem. Rev. 116, 7078–7116 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Finney, A. R. & Salvalaglio, M. Molecular simulation approaches to study crystal nucleation from solutions: Theoretical considerations and computational challenges. WIREs Comput. Mol. Sci. 14, e1697 (2024).Article 
CAS 

Google Scholar 
Ramamoorthy, R. K. et al. The role of pre-nucleation clusters in the crystallization of gold nanoparticles. Nanoscale 12, 16173–16188 (2020).Article 
CAS 
PubMed 

Google Scholar 
Schiener, A. et al. In situ investigation of two-step nucleation and growth of CdS nanoparticles from solution. Nanoscale 7, 11328–11333 (2015).Article 
CAS 
PubMed 

Google Scholar 
Ibrahimkutty, S., Wagener, P., Menzel, A., Plech, A. & Barcikowski, S. Nanoparticle formation in a cavitation bubble after pulsed laser ablation in liquid studied with high time resolution small angle X-ray scattering. Appl. Phys. Lett. 101, 103104 (2012).Article 

Google Scholar 
Albrecht, W., Van Aert, S. & Bals, S. Three-dimensional nanoparticle transformations captured by an electron microscope. Acc. Chem. Res. 54, 1189–1199 (2021).Article 
CAS 
PubMed 

Google Scholar 
Zhou, X.-Q. et al. Zinc oxide nanoparticles: synthesis, characterization, modification, and applications in food and agriculture. Processes 11, 1193 (2023).Article 
CAS 

Google Scholar 
Nagajyothi, P. C. et al. Green route biosynthesis: characterization and catalytic activity of ZnO nanoparticles. Mater. Lett. 108, 160–163 (2013).Article 
CAS 

Google Scholar 
Sun, Y. et al. The applications of morphology controlled ZnO in catalysis. Catalysts 6, 188 (2016).Article 

Google Scholar 
Matinise, N., Fuku, X. G., Kaviyarasu, K., Mayedwa, N. & Maaza, M. ZnO nanoparticles via Moringa oleifera green synthesis: physical properties & mechanism of formation. Appl. Surf. Sci. 406, 339–347 (2017).Article 
CAS 

Google Scholar 
Pushpalatha, C. et al. Zinc oxide nanoparticles: a review on its applications in dentistry. Front. Bioeng. Biotechnol. 10, 917990 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Islam, F. et al. Exploring the journey of zinc oxide nanoparticles (ZnO-NPs) toward biomedical applications. Materials 15, 2160 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gudkov, S. V. et al. A mini review of antibacterial properties of ZnO nanoparticles. Front. Phys. 9, 641481 (2021).Article 

Google Scholar 
Wang, L.-Y. et al. Size and morphology modulation in ZnO nanostructures for nonlinear optical applications: a review. ACS Appl. Nano Mater. 6, 9975–10014 (2023).Article 
CAS 

Google Scholar 
Chen, M. & Dixon, D. A. Machine-learning approach for the development of structure–energy relationships of ZnO nanoparticles. J. Phys. Chem. C 122, 18621–18639 (2018).Article 
CAS 

Google Scholar 
Zagorac, D. & Schön, J. C. Energy landscapes of pure and doped ZnO: from bulk crystals to nanostructures. In Frontiers of Nanoscience (ed. Wales, D. J.) Vol. 21, 151–193 (Elsevier, Waltham, 2022).Leitner, J., Bartůněk, V., Sedmidubský, D. & Jankovský, O. Thermodynamic properties of nanostructured ZnO. Appl. Mater. Today 10, 1–11 (2018).Article 

Google Scholar 
Viñes, F., Lamiel-Garcia, O., Illas, F. & Bromley, S. T. Size dependent structural and polymorphic transitions in ZnO: from nanocluster to bulk. Nanoscale 9, 10067–10074 (2017).Article 
PubMed 

Google Scholar 
Wang, J. et al. Molecular dynamics and density functional studies of a body-centered-tetragonal polymorph of ZnO. Phys. Rev. B 76, 172103 (2007).Article 

Google Scholar 
He, M.-R., Yu, R. & Zhu, J. Reversible wurtzite-tetragonal reconstruction in ZnO(1010) surfaces. Angew. Chem. Int. Ed. 51, 7744–7747 (2012).Article 
CAS 

Google Scholar 
Wang, F. et al. Nanometre-thick single-crystalline nanosheets grown at the water–air interface. Nat. Commun. 7, 1–7 (2016).
Google Scholar 
Gao, Y., Fan, Q., Wang, L., Sun, S. & Yu, X. Molecular dynamics simulation of oxidation growth of ZnO nanopillars. Comput. Mater. Sci. 219, 112008 (2023).Article 
CAS 

Google Scholar 
Baguer, N. et al. Study of the nucleation and growth of TiO2 and ZnO thin films by means of molecular dynamics simulations. J. Cryst. Growth 311, 4034–4043 (2009).Article 
CAS 

Google Scholar 
Barcaro, G., Monti, S., Sementa, L. & Carravetta, V. Modeling nucleation and growth of ZnO nanoparticles in a low temperature plasma by reactive dynamics. J. Chem. Theory Comput. 15, 2010–2021 (2019).Article 
CAS 
PubMed 

Google Scholar 
Artrith, N., Morawietz, T. & Behler, J. High-dimensional neural-network potentials for multicomponent systems: applications to zinc oxide. Phys. Rev. B 83, 153101 (2011).Article 

Google Scholar 
Goniakowski, J., Menon, S., Laurens, G. & Lam, J. Nonclassical nucleation of zinc oxide from a physically motivated machine-learning approach. J. Phys. Chem. C 126, 17456–17469 (2022).Article 
CAS 

Google Scholar 
Behler, J. & Csányi, G. Machine learning potentials for extended systems: a perspective. Eur. Phys. J. B 94, 1–11 (2021).Article 

Google Scholar 
Behler, J. Four generations of high-dimensional neural network potentials. Chem. Rev. 121, 10037–10072 (2021).Article 
CAS 
PubMed 

Google Scholar 
Kandy, A. K. A., Rossi, K., Raulin-Foissac, A., Laurens, G. & Lam, J. Comparing transferability in neural network approaches and linear models for machine-learning interaction potentials. Phys. Rev. B 107, 174106 (2023).Article 
CAS 

Google Scholar 
Benoit, M. et al. Measuring transferability issues in machine-learning force fields: the example of gold–iron interactions with linearized potentials. Mach. Learn.: Sci. Technol. 2, 025003 (2020).
Google Scholar 
Tallec, G., Laurens, G., Fresse-Colson, O. & Lam, J. Potentials based on linear models. In Quantum Chemistry in the Age of Machine Learning (ed. Dral, P. O.) 253–277 (Elsevier, Waltham, 2023).Togo, A. First-principles phonon calculations with phonopy and Phono3py. J. Phys. Soc. Jpn. 92, 012001 (2022).Article 

Google Scholar 
Togo, A., Chaput, L., Tadano, T. & Tanaka, I. Implementation strategies in phonopy and phono3py. J. Phys.: Condens. Matter 35, 353001 (2023).CAS 

Google Scholar 
Pusey, P. N. et al. Hard spheres: crystallization and glass formation. Philos. Trans. Royal Soc. A 367, 4993–5011 (2009).Article 
CAS 

Google Scholar 
Sanz, E. et al. Crystallization mechanism of hard sphere glasses. Phys. Rev. Lett. 106, 215701 (2011).Article 
PubMed 

Google Scholar 
Trudu, F., Donadio, D. & Parrinello, M. Freezing of a Lennard-Jones fluid: from nucleation to spinodal regime. Phys. Rev. Lett. 97, 105701 (2006).Article 
PubMed 

Google Scholar 
Desgranges, C. & Delhommelle, J. Controlling polymorphism during the crystallization of an atomic fluid. Phys. Rev. Lett. 98, 235502 (2007).Article 
PubMed 

Google Scholar 
Espinosa, J. R., Vega, C., Valeriani, C. & Sanz, E. Seeding approach to crystal nucleation. J. Chem. Phys. 144, 034501 (2016).Espinosa, J. R., Vega, C., Valeriani, C. & Sanz, E. The crystal-fluid interfacial free energy and nucleation rate of NaCl from different simulation methods. J. Chem. Phys. 142, 194709 (2015).Bai, X.-M. & Li, M. Calculation of solid-liquid interfacial free energy: a classical nucleation theory based approach. J. Chem. Phys. 124, 124707 (2006).Knott, B. C., Molinero, V., Doherty, M. F. & Peters, B. Homogeneous nucleation of methane hydrates: unrealistic under realistic conditions. J. Am. Chem. Soc. 134, 19544–19547 (2012).Article 
CAS 
PubMed 

Google Scholar 
Pereyra, R. G., Szleifer, I. & Carignano, M. A. Temperature dependence of ice critical nucleus size. J. Chem. Phys. 135, 034508 (2011).Sanz, E. et al. Homogeneous Ice Nucleation at Moderate Supercooling from Molecular Simulation. J. Am. Chem. Soc. 135, 15008–15017 (2013).Article 
CAS 
PubMed 

Google Scholar 
Espinosa, J. R., Sanz, E., Valeriani, C. & Vega, C. Homogeneous ice nucleation evaluated for several water models. J. Chem. Phys. 141, 18C529 (2014).Zimmermann, N. E. R., Vorselaars, B., Quigley, D. & Peters, B. Nucleation of NaCl from aqueous solution: critical sizes, ion-attachment kinetics, and rates. J. Am. Chem. Soc. 137, 13352–13361 (2015).Article 
CAS 
PubMed 

Google Scholar 
Bulutoglu, P. S. et al. An investigation of the kinetics and thermodynamics of NaCl nucleation through composite clusters. PNAS Nexus 1, pgac033 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Addula, R. K. R. & Punnathanam, S. N. Molecular theory of nucleation from dilute phases: formulation and application to Lennard-Jones vapor. Phys. Rev. Lett. 126, 146001 (2021).Article 
CAS 
PubMed 

Google Scholar 
Jiang, H., Debenedetti, P. G. & Panagiotopoulos, A. Z. Nucleation in aqueous NaCl solutions shifts from 1-step to 2-step mechanism on crossing the spinodal. J. Chem. Phys. 150, 124502 (2019).Iida, Y., Hiratsuka, T., Miyahara, M. T. & Watanabe, S. Mechanism of nucleation pathway selection in binary Lennard-Jones solution: a combined study of molecular dynamics simulation and free energy analysis. J. Phys. Chem. B 127, 3524–3533 (2023).Article 
CAS 
PubMed 

Google Scholar 
Klein, W. & Leyvraz, F. Crystalline nucleation in deeply quenched liquids. Phys. Rev. Lett. 57, 2845–2848 (1986).Article 
CAS 
PubMed 

Google Scholar 
Anstine, D. M. & Isayev, O. Machine learning interatomic potentials and long-range physics. J. Phys. Chem. A 127, 2417–2431 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mulliken, R. S. Electronic population analysis on LCAO–MO molecular wave functions. I. J. Chem. Phys. 23, 1833–1840 (1955).Article 
CAS 

Google Scholar 
Bader, R. F. W. Atoms in molecules. Acc. Chem. Res. 18, 9–15 (1985).Article 
CAS 

Google Scholar 
Manz, T. A. & Limas, N. G. Introducing DDEC6 atomic population analysis: part 1. Charge partitioning theory and methodology. RSC Adv. 6, 47771–47801 (2016).Article 
CAS 

Google Scholar 
Ko, T. W., Finkler, J. A., Goedecker, S. & Behler, J. Accurate fourth-generation machine learning potentials by electrostatic embedding. J. Chem. Theory Comput. 19, 3567–3579 (2023).Article 
CAS 
PubMed 

Google Scholar 
Ko, T. W., Finkler, J. A., Goedecker, S. & Behler, J. General-purpose machine learning potentials capturing nonlocal charge transfer. Acc. Chem. Res. 54, 808–817 (2021).Article 
CAS 
PubMed 

Google Scholar 
Ko, T. W., Finkler, J. A., Goedecker, S. & Behler, J. A fourth-generation high-dimensional neural network potential with accurate electrostatics including non-local charge transfer. Nat. Commun. 12, 1–11 (2021).Article 

Google Scholar 
Ewald, P. P. Die berechnung optischer und elektrostatischer gitterpotentiale. Annalen Der Physik 369, 253–287 (1921).Article 

Google Scholar 
Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).Article 
CAS 

Google Scholar 
Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).Article 
CAS 

Google Scholar 
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).Article 
CAS 

Google Scholar 
Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).Article 
CAS 

Google Scholar 
Mukhanov, V. A. et al. Congruent melting and rapid single-crystal growth of ZnO at 4 GPa. CrystEngComm 15, 6318–6322 (2013).Article 
CAS 

Google Scholar 
Schneider, T. & Stoll, E. Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions. Phys. Rev. B 17, 1302–1322 (1978).Article 
CAS 

Google Scholar 
Mickel, W., Kapfer, S. C., Schröder-Turk, G. E. & Mecke, K. Shortcomings of the bond orientational order parameters for the analysis of disordered particulate matter. J. Chem. Phys. 138, 044501 (2013).Menon, S., Leines, G. D. & Rogal, J. Pyscal: a Python module for structural analysis of atomic environments. J. Open Sour. Softw. 4, 1824 (2019).Article 

Google Scholar 
Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Machine Learn. Res. 12, 2825–2830 (2011).
Google Scholar 
Dempster, A. P., Laird, N. M. & Rubin, D. B. Maximum likelihood from incomplete data via the EM algorithm. J. Royal Stat. Soc.: Ser. B (Methodol.) 39, 1–22 (1977).Article 

Google Scholar 
Becker, S., Devijver, E., Molinier, R. & Jakse, N. Unsupervised topological learning for identification of atomic structures. Phys. Rev. E 105, 045304 (2022).Article 
CAS 
PubMed 

Google Scholar 
Boattini, E. et al. Autonomously revealing hidden local structures in supercooled liquids. Nat. Commun. 11, 1–9 (2020).Article 

Google Scholar 
Boattini, E., Dijkstra, M. & Filion, L. Unsupervised learning for local structure detection in colloidal systems. J. Chem. Phys. 151, 154901 (2019).Coslovich, D., Jack, R. L. & Paret, J. Dimensionality reduction of local structure in glassy binary mixtures. J. Chem. Phys. 157, 204503 (2022).Gasparotto, P., Meißner, R. H. & Ceriotti, M. Recognizing local and global structural motifs at the atomic scale. J. Chem. Theory Comput. 14, 486–498 (2018).Article 
CAS 
PubMed 

Google Scholar 
Pipolo, S. et al. Navigating at will on the water phase diagram. Phys. Rev. Lett. 119, 245701 (2017).Article 
CAS 
PubMed 

Google Scholar 
Reinhart, W. F. Unsupervised learning of atomic environments from simple features. Comput. Mater. Sci. 196, 110511 (2021).Article 
CAS 

Google Scholar 
Sarupria, S., Hall, S. W. & Rogal, J. Machine learning for molecular simulations of crystal nucleation and growth. MRS Bull. 47, 949–957 (2022).Article 
CAS 

Google Scholar 
Tamura, R. et al. Structural analysis based on unsupervised learning: search for a characteristic low-dimensional space by local structures in atomistic simulations. Phys. Rev. B 105, 075107 (2022).Article 
CAS 

Google Scholar 
Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model. Simul. Mater. Sci. Eng. 18, 015012 (2009).Article 

Google Scholar 

Hot Topics

Related Articles