Rapid identification of antibody impurities in size-based electrophoresis via CZE-MS generated spectral library

Ha, T. K., Kim, D., Kim, C. L., Grav, L. M. & Lee, G. M. Factors affecting the quality of therapeutic proteins in recombinant Chinese hamster ovary cell culture. Biotechnol. Adv. 54, 107831 (2022).Article 
CAS 
PubMed 

Google Scholar 
Atsumi, Y. et al. Clip formation in the complementarity determining region of bevacizumab lowers monomer stability and affinity for both FcRn and FcγR: A comprehensive characterization of the clipped variant including its higher order structure. J. Pharm. Sci. 111(12), 3243–3250 (2022).Article 
CAS 
PubMed 

Google Scholar 
Atsumi, Y., Sakurai, N., Nishimura, K., Yamazaki, K. & Wakamatsu, K. Identification and characterization of a monoclonal antibody variant species with a clipping in the complementarity determining region isolated by size exclusion chromatography under native conditions. J. Pharm. Sci. 110(10), 3367–3374 (2021).Article 
CAS 
PubMed 

Google Scholar 
Vlasak, J. & Ionescu, R. Fragmentation of monoclonal antibodies. mAbs 3(3), 253–263 (2011).Article 
PubMed 
PubMed Central 

Google Scholar 
Rustandi, R. R. & Wang, Y. Use of CE-SDS gel for characterization of monoclonal antibody hinge region clipping due to copper and high pH stress. Electrophoresis 32(21), 3078–3084 (2011).Article 
CAS 
PubMed 

Google Scholar 
Alhazmi, H. A. & Albratty, M., Analytical techniques for the characterization and quantification of monoclonal antibodies. Pharmaceuticals (Basel) 16(2) (2023).Lechner, A. et al. Insights from capillary electrophoresis approaches for characterization of monoclonal antibodies and antibody drug conjugates in the period 2016–2018. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 1122–1123, 1–17 (2019).Article 

Google Scholar 
Breadmore, M. C. Capillary and microchip electrophoresis: Challenging the common conceptions. J. Chromatogr. A 1221, 42–55 (2012).Article 
CAS 
PubMed 

Google Scholar 
Rustandi, R. R., Washabaugh, M. W. & Wang, Y. Applications of CE SDS gel in development of biopharmaceutical antibody-based products. Electrophoresis 29(17), 3612–3620 (2008).Article 
CAS 
PubMed 

Google Scholar 
Wiesner, R., Scheller, C., Krebs, F., Wätzig, H. & Oltmann-Norden, I. A comparative study of CE-SDS, SDS-PAGE, and Simple Western: Influences of sample preparation on molecular weight determination of proteins. Electrophoresis 42(3), 206–218 (2021).Article 
CAS 
PubMed 

Google Scholar 
Nunnally, B. et al. A series of collaborations between various pharmaceutical companies and regulatory authorities concerning the analysis of biomolecules using capillary electrophoresis. Chromatographia 64(5–6), 359–368 (2006).Article 
CAS 

Google Scholar 
Kumar, R., Guttman, A. & Rathore, A. S. Applications of capillary electrophoresis for biopharmaceutical product characterization. Electrophoresis 43(1–2), 143–166 (2022).Article 
CAS 
PubMed 

Google Scholar 
Filep, C. & Guttman, A. Capillary sodium dodecyl sulfate gel electrophoresis of proteins: Introducing the three dimensional Ferguson method. Anal. Chim. Acta 1183, 338958 (2021).Article 
CAS 
PubMed 

Google Scholar 
Yagi, Y., Kakehi, K., Hayakawa, T. & Suzuki, S. Application of microchip electrophoresis sodium dodecyl sulfate for the evaluation of change of degradation species of therapeutic antibodies in stability testing. Anal. Sci. 30(4), 483–488 (2014).Article 
CAS 
PubMed 

Google Scholar 
Kahle, J., Maul, K. J. & Watzig, H. The next generation of capillary electrophoresis instruments: Performance of CE-SDS protein analysis. Electrophoresis 39(2), 311–325 (2018).Article 
CAS 
PubMed 

Google Scholar 
Duhamel, L. et al. Therapeutic protein purity and fragmented species characterization by capillary electrophoresis sodium dodecyl sulfate using systematic hybrid cleavage and forced degradation. Anal. Bioanal. Chem. 411(21), 5617–5629 (2019).Article 
CAS 
PubMed 

Google Scholar 
Rathore, D. et al. The role of mass spectrometry in the characterization of biologic protein products. Expert Rev. Proteom. 15(5), 431–449 (2018).Article 
CAS 

Google Scholar 
Liu, S. & Schulz, B. L. Biopharmaceutical quality control with mass spectrometry. Bioanalysis 13(16), 1275–1291 (2021).Article 
PubMed 

Google Scholar 
Gunawardena, H. P., Jayatilake, M. M., Brelsford, J. D. & Nanda, H. Diagnostic utility of N-terminal TMPP labels for unambiguous identification of clipped sites in therapeutic proteins. Sci. Rep. 13(1), 18602 (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sandra, K., Vandenheede, I. & Sandra, P. Modern chromatographic and mass spectrometric techniques for protein biopharmaceutical characterization. J. Chromatogr. A 1335, 81–103 (2014).Article 
CAS 
PubMed 

Google Scholar 
Duivelshof, B. L. et al. Therapeutic Fc-fusion proteins: Current analytical strategies. J. Sep. Sci. 44(1), 35–62 (2021).Article 
CAS 
PubMed 

Google Scholar 
Tassi, M. et al. Advances in native high-performance liquid chromatography and intact mass spectrometry for the characterization of biopharmaceutical products. J. Sep. Sci. 41(1), 125–144 (2018).Article 
CAS 
PubMed 

Google Scholar 
Qu, M. et al. Qualitative and quantitative characterization of protein biotherapeutics with liquid chromatography mass spectrometry. Mass Spectrom. Rev. 36(6), 734–754 (2017).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Rashid, M. H. Full-length recombinant antibodies from Escherichia coli: Production, characterization, effector function (Fc) engineering, and clinical evaluation. MAbs 14(1), 2111748 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Gahoual, R., Beck, A., Leize-Wagner, E. & Francois, Y. N. Cutting-edge capillary electrophoresis characterization of monoclonal antibodies and related products. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 1032, 61–78 (2016).Article 
CAS 

Google Scholar 
Lu, J. J., Zhu, Z., Wang, W. & Liu, S. Coupling sodium dodecyl sulfate-capillary polyacrylamide gel electrophoresis with matrix-assisted laser desorption ionization time-of-flight mass spectrometry via a poly(tetrafluoroethylene) membrane. Anal. Chem. 83(5), 1784–1790 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, M. et al. Identification of a monoclonal antibody clipping variant by cross-validation using capillary electrophoresis—Sodium dodecyl sulfate, capillary zone electrophoresis—Mass spectrometry and capillary isoelectric focusing – mass spectrometry. J. Chromatogr. A 1684, 463560 (2022).Article 
CAS 
PubMed 

Google Scholar 
Romer, J., Stolz, A., Kiessig, S., Moritz, B. & Neususs, C. Online top-down mass spectrometric identification of CE(SDS)-separated antibody fragments by two-dimensional capillary electrophoresis. J. Pharm. Biomed. Anal. 201, 114089 (2021).Article 
PubMed 

Google Scholar 
Sarkozy, D. & Guttman, A. Analysis of peptides and proteins by native and SDS capillary gel electrophoresis coupled to electrospray ionization mass spectrometry via a closed-circuit coaxial sheath flow reactor interface. Anal. Chem. 95(18), 7082–7086 (2023).Article 
CAS 
PubMed 

Google Scholar 
Li, W. et al. Identification and characterization of monoclonal antibody fragments cleaved at the complementarity determining region using orthogonal analytical methods. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 1048, 121–129 (2017).Article 
CAS 

Google Scholar 
Wang, W. H., Cheung-Lau, J., Chen, Y., Lewis, M. & Tang, Q. M. Specific and high-resolution identification of monoclonal antibody fragments detected by capillary electrophoresis-sodium dodecyl sulfate using reversed-phase HPLC with top-down mass spectrometry analysis. MAbs 11(7), 1233–1244 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cao, M. et al. Identification of a CE-SDS shoulder peak as disulfide-linked fragments from common C(H)2 cleavages in IgGs and IgG-like bispecific antibodies. MAbs 13(1), 1981806 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Wojcik, R., Dada, O. O., Sadilek, M. & Dovichi, N. J. Simplified capillary electrophoresis nanospray sheath-flow interface for high efficiency and sensitive peptide analysis. Rapid Commun. Mass Spectrom. 24(17), 2554–2560 (2010).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Sun, L., Zhu, G., Zhang, Z., Mou, S. & Dovichi, N. J. Third-generation electrokinetically pumped sheath-flow nanospray interface with improved stability and sensitivity for automated capillary zone electrophoresis-mass spectrometry analysis of complex proteome digests. J. Proteome Res. 14(5), 2312–2321 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dai, J., Lamp, J., Xia, Q. & Zhang, Y. Capillary isoelectric focusing-mass spectrometry method for the separation and online characterization of intact monoclonal antibody charge variants. Anal. Chem. 90(3), 2246–2254 (2018).Article 
CAS 
PubMed 

Google Scholar 
Xu, T., Han, L., George Thompson, A. M. & Sun, L. An improved capillary isoelectric focusing-mass spectrometry method for high-resolution characterization of monoclonal antibody charge variants. Anal. Methods 14(4), 383–393 (2022).Article 
CAS 
PubMed 

Google Scholar 
Lamp, J., Ikonomova, S. P., Karlsson, A. J., Xia, Q. & Wang, Y. Online capillary electrophoresis—Mass spectrometry analysis of histatin-5 and its degradation products. Analyst 145(14), 4787–4794 (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shen, X., Liang, Z., Xu, T., Yang, Z., Wang, Q., Chen, D., Pham, L., Du, W. & Sun, L. Investigating native capillary zone electrophoresis-mass spectrometry on a high-end quadrupole-time-of-flight mass spectrometer for the characterization of monoclonal antibodies. Int. J. Mass Spectrom. 462 (2021)Sun, L., Zhu, G., Yan, X. & Dovichi, N. J. High sensitivity capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry for the rapid analysis of complex proteomes. Curr. Opin. Chem. Biol. 17(5), 795–800 (2013).Article 
CAS 
PubMed 

Google Scholar 
Han, M., Rock, B. M., Pearson, J. T. & Rock, D. A. Intact mass analysis of monoclonal antibodies by capillary electrophoresis-Mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 1011, 24–32 (2016).Article 
CAS 

Google Scholar 
Kshirsagar, R., McElearney, K., Gilbert, A., Sinacore, M. & Ryll, T. Controlling trisulfide modification in recombinant monoclonal antibody produced in fed-batch cell culture. Biotechnol. Bioeng. 109(10), 2523–2532 (2012).Article 
CAS 
PubMed 

Google Scholar 
Seibel, R. et al. Impact of S-sulfocysteine on fragments and trisulfide bond linkages in monoclonal antibodies. MAbs 9(6), 889–897 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Luo, H. et al. Cathepsin L causes proteolytic cleavage of Chinese-Hamster-Ovary cell expressed proteins during processing and storage: Identification, characterization, and mitigation. Biotechnol. Prog. 35(1), e2732 (2019).Article 
PubMed 

Google Scholar 
Cui, T. et al. Removal strategy on protein A chromatography, near real time monitoring and characterisation during monoclonal antibody production. J. Biotechnol. 305, 51–60 (2019).Article 
CAS 
PubMed 

Google Scholar 
Gu, S. et al. Characterization of trisulfide modification in antibodies. Anal. Biochem. 400(1), 89–98 (2010).Article 
CAS 
PubMed 

Google Scholar 
Tarelli, E. & Corran, P. H. Ammonia cleaves polypeptides at asparagine proline bonds. J. Pept. Res. 62(6), 245–251 (2003).Article 
CAS 
PubMed 

Google Scholar 
Caval, T. et al. The lysosomal endopeptidases Cathepsin D and L are selective and effective proteases for the middle-down characterization of antibodies. FEBS J. 288(18), 5389–5405 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, S., Liu, A. P., Yan, Y., Daly, T. J. & Li, N. Characterization of product-related low molecular weight impurities in therapeutic monoclonal antibodies using hydrophilic interaction chromatography coupled with mass spectrometry. J. Pharm. Biomed. Anal. 154, 468–475 (2018).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles