Anticancer efficacy of magnetite nanoparticles synthesized using aqueous extract of brown seaweed Rosenvingea intricata, South Andaman, India

SakthiSri, V. & George, M. Spherical CeO2 nanoparticles encapsulated with Nelumbo nucifera Gaertn. Flower extract and its in vitro anticancer activity against HCT 116 human colon cancer cell line. Indian J. Chem. Technol. 27, 153–160 (2020).
Google Scholar 
Ferlay, J. et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer. 144, 1941–1953 (2019).Article 
CAS 
PubMed 

Google Scholar 
Dickens, E. & Ahmed, S. Principles of cancer treatment by chemotherapy. Surgery. 36, 134–138 (2018).
Google Scholar 
Fernando, J. & Jones, R. The principles of cancer treatment by chemotherapy. Surgery. 33, 131–135 (2015).
Google Scholar 
Sonbol, H., Ameen, F., AlYahya, S., Almansob, A. & Alwakeel, S. Padina boryana mediated green synthesis of crystalline palladium nanoparticles as potential nanodrug against multidrug-resistant bacteria and cancer cells. Nat. Sci. Rep. 11, 5444 (2021).ADS 
CAS 

Google Scholar 
Nikalje, A. P. Nanotechnology and its applications in medicine. Med. Chem. 5, 081–089 (2015).Article 

Google Scholar 
Ameen, F. et al. Fabrication of silver nanoparticles employing the cyanobacterium Spirulina platensis and its bactericidal effect against opportunistic nosocomial pathogens of the respiratory tract. J. Mol. Struct. 3, 128392 (2020).Article 

Google Scholar 
Khan, I., Saeed, K. & Khan, I. Nanoparticles: properties, applications and toxicities. Arab. J. Chem. 12, 908–931 (2019).Article 
CAS 

Google Scholar 
Abaid, R. et al. Biosynthesizing Cassia fistula extract mediated silver nanoparticles for MCF-7 cell lines anti-cancer assay. ACS Omega. 8, 17317–17326 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Endeshaw, S. B. et al. Croton macrostachyus leaf extract mediated green synthesis of ZnO nanoparticles and ZnO/CuO nanocomposites for the enhanced photodegradation of methylene blue dye with the COMSOL simulation model. ACS Omega. 9, 559–572 (2024).Article 
CAS 
PubMed 

Google Scholar 
Win, T. T., Khan, S., Bo, B., Zada, S. & Fu, P. C. Green synthesis and characterization of Fe3O4 nanoparticles using Chlorella-K01 extract for potential enhancement of plant growth stimulating and antifungal activity. Nat. Sci. Rep. 11, 21996 (2021).ADS 
CAS 

Google Scholar 
Soureshjani, P. T., Shadi, A. & Mohammadsaleh, F. Algae-mediated route to biogenic cuprous oxide nanoparticles and spindle-like CaCO3: A comparative study, facile synthesis, and biological properties. RSC Adv. 11, 10599–10609 (2021).Article 

Google Scholar 
Telebian, S., Shahnavaz, B., Nejabat, M., Abolhassani, Y. & Rassouli, F. B. Bacterial-mediated synthesis and characterization of copper oxide nanoparticles with antibacterial, antioxidant, and anticancer potentials. Front. Bioeng. Biotechnol. 11, 1140010 (2023).Article 

Google Scholar 
Ghosh, S., Ahmad, R., Banerjee, K., AlAjmi, M. F. & Rahman, S. Mechanistic aspects of microbe-mediated nanoparticle synthesis. Front. Microbiol. 12, 638068 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Molnár, Z. et al. Green synthesis of gold nanoparticles by thermophilic filamentous fungi. Nat. Sci. Rep. 8, 3943 (2018).ADS 

Google Scholar 
Wang, D. et al. Fungus-mediated green synthesis of nano-silver using Aspergillus sydowii and its antifungal/antiproliferative activities. Nat. Sci. Rep. 11, 10356 (2021).ADS 
CAS 

Google Scholar 
Sharma, A., Sagar, A., Rana, J. & Rani, R. Green synthesis of silver nanoparticles and its antibacterial activity using fungus Talaromyces purpureogenus isolated from Taxus baccata Linn. Micro and Nano Syst. Lett. 10, 2 (2022).Article 
ADS 

Google Scholar 
Nuzzo, A., Hosseinkhani, B., Boon, N., Zanaroli, G. & Fava, F. Impact of bio-palladium nanoparticles (bio-Pd NPs) on the activity and structure of a marine microbial community. Environ. Pollut. 220, 1068–1078 (2017).Article 
CAS 
PubMed 

Google Scholar 
Al-Saif, S. S. A., Abdel-Raouf, N., El-Wazanani, H. A. & Aref, I. A. Antibacterial substances from marine algae isolated from Jeddah coast of Red Sea Saudi Arabia. Saudi J. Biol. Sci. 21, 57–64 (2014).Article 
CAS 
PubMed 

Google Scholar 
Ibraheem, I. B. M., Alharbi, R. M., Abdel-Raouf, N. & Al-Enazi, N. M. Contributions to the study of the marine algae inhabiting Umluj Seashore, Red Sea. Beni-Suef Univ. J. Basic Appl. Sci. 3, 278–285 (2014).
Google Scholar 
Karthick, P., Ramesh, C. & Mohanraju, R. A checklist of seaweeds of the Andaman and Nicobar Islands, India: A way forward for seaweed cultivation, food, and drug applications. Environ. Monit. Assess. 193, 1–17 (2021).Article 

Google Scholar 
Abdelwahab, R. Therapeutic and pharmaceutical application of seaweeds. Biotechnol. Appl. Seaweeds. Chapter 5, 85–116 (2017).
Google Scholar 
Periera, L. Seaweeds as source of bioactive substances and skin care therapy, cosmeceuticals, algotheraphy, and Thalassotherapy. Cosmetics. 5, 68 (2018).Article 

Google Scholar 
Martins, R. M. et al. Macroalgae extracts from Antarctica have antimicrobial and anticancer potential. Front. Microbiol. 9, 1–10 (2018).Article 

Google Scholar 
Namvar, F. et al. Cytotoxic effect of magnetic iron oxide nanoparticles synthesized via seaweed aqueous extract. Int. J. Nanomed. 9, 2479–2488 (2014).Article 

Google Scholar 
SakthiSriV, S. P. & George, M. In vitro anticancer and antitubercular activities of cellulose-magnetite nanocomposite synthesized using deep eutectic solvent as a dispersant. J. Mater. Nanosci. 8, 1–10 (2021).
Google Scholar 
Ali, A. et al. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl. 19, 49–67 (2016).Article 

Google Scholar 
Yang, Y. et al. Identification and characterization of marine seaweeds for biocompounds production. Environ. Technol. Innov. 24, 101848 (2021).Article 
CAS 

Google Scholar 
Jha, B., Reddy, C. R. K., Thakur, M. C. & Rao, M. U. Seaweeds of India: the diversity and distribution of seaweeds of the Gujarat coast 198 (Springer, Dordrecht, 2009).Book 

Google Scholar 
Rao, P. S. N. & Gupta, R. K. Algae of India, Vol 3: A checklist of Indian Marine Algae (Excluding Diatoms & Dinoflagellates). Botanical Survey of India, Kolkata. pp 93 (2015).Børgesen, F. The marine algae of the Danish West Indies. Part 2. Phaeophyceae. Dansk Botanisk Arkiv 2(2): 1–68, 44 figs (1914).Krishnamurthy, V. & Baluswami, M. Phaeophyceae of India and neighbourhood Volume I Ectocarpales, Sphacelariales, Dictyotales, Chordariales and Scytosiphonales. pp. [2], i-iv, 1–193, 308 figs, pls I-VI. Chennai: Krishnamurthy Institute of Algology. (2010).Kumar, A. S. & Palanisamy, M. Notes on the additions of phaeophyceae from the coastline of Andhra Pradesh. Nelumbo 63(1), 224–234 (2021).
Google Scholar 
Sobuj, M. K. A. et al. Effect of solvents on bioactive compounds and antioxidant activity of Padina tetrastromatica and Gracilaria tenuistipitata seaweed collected from Bangladesh. Nat. Sci. Rep. 11, 19082 (2021).ADS 
CAS 

Google Scholar 
Guiry, M. D. & Guiry, G. M. 2024. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. https://www.algaebase.org.SakthiSriV, S. P., Taj, J. & George, M. Facile synthesis of magnetite nanocubes using deep eutectic solvent: An insight to anticancer and photo-Fenton efficacy. Surf. Interf. 20, 100609 (2020).Article 

Google Scholar 
SakthiSriV, S. P. et al. Unveiling the photosensitive and magnetic properties of amorphous iron nanoparticles with its application towards decontamination of water and cancer treatment. J. Mater. Res. Technol. 15, 99–118 (2021).Article 

Google Scholar 
Ramalingam, V., Harshavardhan, M., Kumar, S. D. & Devi, S. M. Wet chemical mediated hematite α-Fe2O3 nanoparticles synthesis: Preparation, characterization and anticancer activity against human metastatic ovarian cancer. J. Alloys & Comp. 834, 155118–155128 (2020).Article 
CAS 

Google Scholar 
Chen, Q., Kang, J. & Fu, C. The independence of and associations among apoptosis, autophagy, and necrosis. Signal Transduct. Targeted Ther. 3, 18 (2018).Article 

Google Scholar 
Nidheesh, P. V., Gandhimathi, R., Velmathi, S. & Sanjini, N. S. Magnetite as a heterogenous electro Fenton catalyst for the removal of Rhodamine B from aqueous solution. RSC Adv. 4, 5698–5708 (2014).Article 
ADS 
CAS 

Google Scholar 
Rufus, A., Sreeju, N. & Philip, D. Synthesis of biogenic hematite (α-Fe2O3) nanoparticles for antibacterial and nanofluid applications. RSC Adv. 6, 94206–94217 (2016).Article 
ADS 
CAS 

Google Scholar 
Sadat, M. E. et al. Photoluminescence and photothermal effect of Fe3O4 nanoparticles for medical imaging and therapy. Appl. Phys. Lett. 105, 91903 (2014).Article 

Google Scholar 
Ali, K. et al. Microwave accelerated green synthesis of stable silver nanoparticles with Eucalyptus globulus leaf extract and their antibacterial and antibiofilm activity on clinical isolates. PLoS ONE 10, 15 (2015).Article 

Google Scholar 
Li, J. et al. A review of the interaction between anthocyanins and proteins. Food Sci. & Technol. Intern. 27, 470–482 (2020).Article 

Google Scholar 
Sánchez-García, F. et al. Evolution of volatile compounds and sensory characteristics of edible green seaweed (Ulva rigida) during storage at different temperatures. J. Sci. Food. & Agri. 99, 5475–5482 (2019).Article 

Google Scholar 
Wang, T., Jin, X., Chen, Z., Megharaj, M. & Naidu, R. Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater. Sci. Total Environ. 466–467, 210–213 (2014).Article 
ADS 
PubMed 

Google Scholar 
Kumar, Y. et al. Evaluation of chemical, functional, spectral, and thermal characteristics of Sargassum wightii and Ulva rigida from Indian coast. J. Food Qual. 2021, 9133464 (2021).Article 

Google Scholar 
Vandanjon, L. et al. The use of FTIR spectroscopy as a tool for the seasonal variation analysis and for the quality control of polysaccharides from seaweeds. Mar. Drugs 21, 482 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, Z. et al. Water soluble amorphous iron oxide nanoparticles synthesized by a quickly pestling and nontoxic method at room temperature as MRI contrast agents. Chem. Engin. J. 235, 231–235 (2014).Article 
CAS 

Google Scholar 
SakthiSriV, S. P., Vijayakumar, A. & George, M. Synthesis, optical, morphological and magnetic properties of hematite nanorods in deep eutectic solvent with its antibacterial and photocatalytic applications. Asian J. Chem. 31, 879–885 (2019).Article 

Google Scholar 
SakthiSriV, S. P. & George, M. Spherical CeO2 nanoparticles encapsulated with Nelumbo nucifera Gaertn. Flower extract and its in vitro anticancer activity against HCT 116 human colon cancer cell line. Indian J. Chem. Technol. 27, 153–160 (2020).
Google Scholar 
Sulaiman, G. M., Tawfeeq, A. T. & Naji, A. S. Biosynthesis, characterization of magnetic iron oxide nanoparticles and evaluations of the cytotoxicity and DNA damage of human breast carcinoma cell lines. Artif. Cells Nanomed. Biotechnol. 46, 1215–1229 (2018).Article 
CAS 
PubMed 

Google Scholar 
Sankar, R. et al. Nanostructured delivery system for Suberoylanilide hydroxamic acid against lung cancer cells. Mater. Sci. Eng. C. Mater. Biol. Appl. 51, 362–368 (2015).Article 
CAS 
PubMed 

Google Scholar 
Viswanathan, S. et al. Anti-cancer activity of Hypnea valentiae seaweed loaded gold nanoparticles through EMT signaling pathway in A549 cells. J. Biochem. Systemat. & Ecol. 107, 104606 (2023).Article 
CAS 

Google Scholar 
Algotiml, R. et al. Anticancer and antimicrobial activity of biosynthesized Red Sea marine algal silver nanoparticles. Sci. Rep. 12, 2421 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Touliabah, H. E., El-Sheekh, M. M., Elsayed, M. & Makhlof, M. Evaluation of Polycladia myrica mediated selenium nanoparticles (PoSeNPS) cytotoxicity against PC-3 cells and antiviral activity against HAV HM175 (Hepatitis A), HSV-2 (Herpes simplex II), and Adenovirus strain 2. Front. Mar. Sci. 9, 1–14 (2022).Article 

Google Scholar 
Fouda, A. et al. Enhanced antimicrobial, cytotoxicity, larvicidal, and repellence activities of brown algae, Cystoseira crinita-mediated green synthesis of magnesium oxide nanoparticles. Front. Bioeng. Biotechnol. 10, 849921 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Phull, A. R. et al. Synthesis, characterization, anticancer activity assessment and apoptosis signaling of fucoidan mediated copper oxide nanoparticles. Arabian J. Chem. 14, 103250 (2021).Article 
CAS 

Google Scholar 
Anjali, K. P., Sangeetha, B. M., Raghunathan, R., Devi, G. & Dutta, S. Seaweed mediated fabrication of zinc oxide nanoparticles and their antibacterial, antifungal and anticancer applications. Chem. Slct. 6, 647–656 (2021).CAS 

Google Scholar 
Ali, M. S., Anuradha, V., Abishek, R., Yogananth, N. & Sheeba, H. In vitro anticancer activity of green synthesis ruthenium nanoparticle from Dictyota dichotoma marine algae. NanoWorld J. 3, 66–71 (2017).Article 
CAS 

Google Scholar 
Algotiml, R. et al. Anticancer and antimicrobial activity of red sea seaweed extracts-mediated gold nanoparticles. J. Pure Appl. Microbiol. 16, 207–225 (2022).Article 
CAS 

Google Scholar 
Rajeshkumar, S. et al. Apoptotic and antioxidant activity of gold nanoparticles synthesized using marine brown seaweed: An In Vitro study. Biomed. Res. Int. 13, 1–9 (2022).Article 

Google Scholar 
Devi, J. S. & Bhimba, B. V. Anticancer activity of silver nanoparticles synthesized by the seaweed Ulva lactuca in vitro. J. Nanomed. Biotherap. Discovery. 1, 1–5 (2012).
Google Scholar 
Abo-Neima, S. E., Ahmed, A. A., El-Sheekh, M. & Makhlof, M. E. M. Polycladia myrica-based delivery of selenium nanoparticles in combination with radiotherapy induces potent in vitro antiviral and in vivo anticancer activities against Ehrlich ascites tumor. Front. Mol. Biosci. 10, 1–15 (2023).Article 

Google Scholar 
Balaji, T. et al. Padina boergesenii-mediated copper oxide nanoparticles synthesis, with their antibacterial and anticancer potential. Biomed. 11(2285), 1–15 (2023).
Google Scholar 
Baskar, G. et al. Biosynthesis of iron oxide nanoparticles from red seaweed Hypnea valentiae and evaluation of their antioxidant and antitumor potential via the AKT/PI3K pathway. Pro. Biochem. 141, 155–169 (2024).Article 
CAS 

Google Scholar 
Bensy, A. D. V. & Christobel, G. J. Green synthesis of iron nanoparticles using aqueous extract of Turbinaria conoides (J. Agardh) and their anticancer properties. Current Bot. 12, 75–79 (2021).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles