Unveiling disulfidptosis-related biomarkers and predicting drugs in Alzheimer’s disease

De-Paula, V. J., Radanovic, M., Diniz, B. S. & Forlenza, O. V. Alzheimer’s disease. Subcell. Biochem. 65, 329–352 (2012).Article 
CAS 
PubMed 

Google Scholar 
Ju, Y. & Tam, K. Y. Pathological mechanisms and therapeutic strategies for Alzheimer’s disease. Neural Regen. Res. 17, 543–549 (2022).Article 
CAS 
PubMed 

Google Scholar 
Lane, C. A., Hardy, J. & Schott, J. M. Alzheimer’s disease. Eur. J. Neurol. 25, 59–70 (2018).Article 
CAS 
PubMed 

Google Scholar 
Gauthier, S. et al. World Alzheimer Report 2022. Alzheimer’s disease International https://www.alzint.org/resource/world-alzheimer-report-2022 (2022).2023 Alzheimer’s disease facts and figures. Alzheimers Dement. J. Alzheimers Assoc. 19, 1598–1695 (2023).Hardy, J. A. & Higgins, G. A. Alzheimer’s disease: The amyloid cascade hypothesis. Science 256, 184–185 (1992).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Muralidar, S., Ambi, S. V., Sekaran, S., Thirumalai, D. & Palaniappan, B. Role of tau protein in Alzheimer’s disease: The prime pathological player. Int. J. Biol. Macromol. 163, 1599–1617 (2020).Article 
CAS 
PubMed 

Google Scholar 
Lin, M. T. & Beal, M. F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443, 787–795 (2006).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Chen, Z. & Zhong, C. Oxidative stress in Alzheimer’s disease. Neurosci. Bull. 30, 271–281 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Preeti, K., Sood, A. & Fernandes, V. Metabolic regulation of glia and their neuroinflammatory role in Alzheimer’s disease. Cell. Mol. Neurobiol. 42, 2527–2551 (2022).Article 
CAS 
PubMed 

Google Scholar 
Neurology, T. L. Treatment for Alzheimer’s disease: Time to get ready. Lancet Neurol. 22, 455 (2023).Article 

Google Scholar 
Tian, S. et al. Exploring pharmacological active ingredients of traditional Chinese medicine by pharmacotranscriptomic map in ITCM. Brief. Bioinform. 24, bbad027 (2023).Article 
PubMed 

Google Scholar 
Tian, S. et al. COIMMR: A computational framework to reveal the contribution of herbal ingredients against human cancer via immune microenvironment and metabolic reprogramming. Brief. Bioinform. 24, bbad346 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Zheng, T., Liu, Q., Xing, F., Zeng, C. & Wang, W. Disulfidptosis: A new form of programmed cell death. J. Exp. Clin. Cancer Res. CR 42, 137 (2023).Article 
CAS 
PubMed 

Google Scholar 
Zhao, S. et al. Crosstalk of disulfidptosis-related subtypes, establishment of a prognostic signature and immune infiltration characteristics in bladder cancer based on a machine learning survival framework. Front. Endocrinol. 14, 1180404 (2023).Article 

Google Scholar 
Wang, Y., Deng, Y., Xie, H. & Cao, S. Hub gene of disulfidptosis-related immune checkpoints in breast cancer. Med. Oncol. Northwood Lond. Engl. 40, 222 (2023).Article 
CAS 

Google Scholar 
Wang, T. et al. Disulfidptosis classification of hepatocellular carcinoma reveals correlation with clinical prognosis and immune profile. Int. Immunopharmacol. 120, 110368 (2023).Article 
CAS 
PubMed 

Google Scholar 
Zhang, L. et al. Development of tumor-evolution-targeted anticancer therapeutic nanomedicineEVT. Chem 10, 1337–1356 (2024).Article 
CAS 

Google Scholar 
Ma, S., Wang, D. & Xie, D. Identification of disulfidptosis-related genes and subgroups in Alzheimer’s disease. Front. Aging Neurosci. 15, 1236490 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Davis, S. & Meltzer, P. S. GEOquery: A bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinforma. Oxf. Engl. 23, 1846–1847 (2007).Article 

Google Scholar 
Narayanan, M. et al. Common dysregulation network in the human prefrontal cortex underlies two neurodegenerative diseases. Mol. Syst. Biol. 10, 743 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
McKay, E. C. et al. Peri-infarct upregulation of the oxytocin receptor in vascular dementia. J. Neuropathol. Exp. Neurol. 78, 436–452 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liang, W. S. et al. Gene expression profiles in anatomically and functionally distinct regions of the normal aged human brain. Physiol. Genom. 28, 311–322 (2007).Article 
CAS 

Google Scholar 
Liang, G. et al. Nanomedomics. ACS Nano 18, 10979–11024 (2024).Article 
CAS 
PubMed 

Google Scholar 
Liu, X. et al. Actin cytoskeleton vulnerability to disulfide stress mediates disulfidptosis. Nat. Cell Biol. 25, 404–414 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ritchie, M. E. et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Altmann, A., Toloşi, L., Sander, O. & Lengauer, T. Permutation importance: A corrected feature importance measure. Bioinforma. Oxf. Engl. 26, 1340–1347 (2010).Article 
CAS 

Google Scholar 
Wu, T. et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innov. Camb. Mass 2, 100141 (2021).CAS 

Google Scholar 
Schober, P. & Vetter, T. R. Logistic regression in medical research. Anesth. Analg. 132, 365–366 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Robin, X. et al. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 12, 77 (2011).Article 

Google Scholar 
Chen, B., Khodadoust, M. S., Liu, C. L., Newman, A. M. & Alizadeh, A. A. Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol. Biol. Clifton NJ 1711, 243–259 (2018).Article 
CAS 

Google Scholar 
Nguyen, T. et al. GraphDTA: Predicting drug-target binding affinity with graph neural networks. Bioinforma. Oxf. Engl. 37, 1140–1147 (2021).Article 
CAS 

Google Scholar 
Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 46, D1074–D1082 (2018).Article 
CAS 
PubMed 

Google Scholar 
UniProt Consortium. UniProt: The universal protein knowledgebase in 2023. Nucleic Acids Res. 51, D523–D531 (2023).Article 

Google Scholar 
Liu, Y. et al. CB-Dock2: Improved protein–ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Res. 50, W159–W164 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Trott, O. & Olson, A. J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Andreone, B. J., Larhammar, M. & Lewcock, J. W. Cell death and neurodegeneration. Cold Spring Harb. Perspect. Biol. 12, a036434 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Montini, E. et al. A novel human serine-threonine phosphatase related to the Drosophila retinal degeneration C (rdgC) gene is selectively expressed in sensory neurons of neural crest origin. Hum. Mol. Genet. 6, 1137–1145 (1997).Article 
CAS 
PubMed 

Google Scholar 
Herzig, S. & Neumann, J. Effects of serine/threonine protein phosphatases on ion channels in excitable membranes. Physiol. Rev. 80, 173–210 (2000).Article 
CAS 
PubMed 

Google Scholar 
Srivastava, S., Ahmad, R. & Khare, S. K. Alzheimer’s disease and its treatment by different approaches: A review. Eur. J. Med. Chem. 216, 113320 (2021).Article 
CAS 
PubMed 

Google Scholar 
Uittenbogaard, M., Baxter, K. K. & Chiaramello, A. The neurogenic basic helix–loop–helix transcription factor NeuroD6 confers tolerance to oxidative stress by triggering an antioxidant response and sustaining the mitochondrial biomass. ASN Neuro 2, e00034 (2010).Article 
PubMed 
PubMed Central 

Google Scholar 
Wallace, D. C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine. Annu. Rev. Genet. 39, 359–407 (2005).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Satoh, J.-I., Yamamoto, Y., Asahina, N., Kitano, S. & Kino, Y. RNA-Seq data mining: Downregulation of NeuroD6 serves as a possible biomarker for Alzheimer’s disease brains. Dis. Markers 2014, 123165 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Fowler, K. D. et al. Leveraging existing data sets to generate new insights into Alzheimer’s disease biology in specific patient subsets. Sci. Rep. 5, 14324 (2015).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, C. et al. Effect of vasoactive intestinal peptide (VIP) on NKG2D signal pathway and its contribution to immune escape of MKN45 cells. Sci. World J. 2013, 429545 (2013).Article 

Google Scholar 
Villanueva-Romero, R. et al. Human CD4+CD45RA+ T cells behavior after in vitro activation: Modulatory role of vasoactive intestinal peptide. Int. J. Mol. Sci. 23, 2346 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Brenneman, D. E. et al. Vasoactive intestinal peptide. Link between electrical activity and glia-mediated neurotrophism. Ann. N. Y. Acad. Sci. 897, 17–26 (1999).Article 
ADS 
CAS 
PubMed 

Google Scholar 
White, C. M., Ji, S., Cai, H., Maudsley, S. & Martin, B. Therapeutic potential of vasoactive intestinal peptide and its receptors in neurological disorders. CNS Neurol. Disord. Drug Targets 9, 661–666 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Deng, G. & Jin, L. The effects of vasoactive intestinal peptide in neurodegenerative disorders. Neurol. Res. 39, 65–72 (2017).Article 
CAS 
PubMed 

Google Scholar 
Nowak, J. Z., Jozwiak-Bebenista, M. & Bednarek, K. Effects of PACAP and VIP on cyclic AMP formation in rat neuronal and astrocyte cultures under normoxic and hypoxic condition. Peptides 28, 1706–1712 (2007).Article 
CAS 
PubMed 

Google Scholar 
Saus, E. et al. Comprehensive copy number variant (CNV) analysis of neuronal pathways genes in psychiatric disorders identifies rare variants within patients. J. Psychiatr. Res. 44, 971–978 (2010).Article 
PubMed 

Google Scholar 
Gonzalez-Rey, E., Chorny, A., Fernandez-Martin, A., Varela, N. & Delgado, M. Vasoactive intestinal peptide family as a therapeutic target for Parkinson’s disease. Expert Opin. Ther. Targets 9, 923–929 (2005).Article 
CAS 
PubMed 

Google Scholar 
Goff, K. M. & Goldberg, E. M. A role for vasoactive intestinal peptide interneurons in neurodevelopmental disorders. Dev. Neurosci. 43, 168–180 (2021).Article 
CAS 
PubMed 

Google Scholar 
Chowdhury, U. R., Samant, R. S., Fodstad, O. & Shevde, L. A. Emerging role of nuclear protein 1 (NUPR1) in cancer biology. Cancer Metastasis Rev. 28, 225–232 (2009).Article 
CAS 
PubMed 

Google Scholar 
Xu, X. et al. Nupr1 modulates methamphetamine-induced dopaminergic neuronal apoptosis and autophagy through CHOP-Trib3-mediated endoplasmic reticulum stress signaling pathway. Front. Mol. Neurosci. 10, 203 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Leone, A. et al. The Gem GTP-binding protein promotes morphological differentiation in neuroblastoma. Oncogene 20, 3217–3225 (2001).Article 
CAS 
PubMed 

Google Scholar 
Mulder, J. et al. Molecular reorganization of endocannabinoid signalling in Alzheimer’s disease. Brain 134, 1041–1060 (2011).Article 
PubMed 
PubMed Central 

Google Scholar 
Li, Y. et al. Implications of GABAergic neurotransmission in Alzheimer’s disease. Front. Aging Neurosci. 8, 31 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Sun, E., Motolani, A., Campos, L. & Lu, T. The pivotal role of NF-kB in the pathogenesis and therapeutics of Alzheimer’s disease. Int. J. Mol. Sci. 23, 8972 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, X. & Holtzman, D. M. Emerging roles of innate and adaptive immunity in Alzheimer’s disease. Immunity 55, 2236–2254 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Silvin, A. et al. Dual ontogeny of disease-associated microglia and disease inflammatory macrophages in aging and neurodegeneration. Immunity 55, 1448-1465.e6 (2022).Article 
CAS 
PubMed 

Google Scholar 
Zenaro, E. et al. Neutrophils promote Alzheimer’s disease-like pathology and cognitive decline via LFA-1 integrin. Nat. Med. 21, 880–886 (2015).Article 
CAS 
PubMed 

Google Scholar 
Liu, P. et al. Biomimetic dendrimer-peptide conjugates for early multi-target therapy of Alzheimer’s disease by inflammatory microenvironment modulation. Adv. Mater. 33, 2100746 (2021).Article 
CAS 

Google Scholar 
Thawkar, B. S. & Kaur, G. Inhibitors of NF-κB and P2X7/NLRP3/Caspase 1 pathway in microglia: Novel therapeutic opportunities in neuroinflammation induced early-stage Alzheimer’s disease. J. Neuroimmunol. 326, 62–74 (2019).Article 
CAS 
PubMed 

Google Scholar 
Kubin, A., Wierrani, F., Burner, U., Alth, G. & Grünberger, W. Hypericin—The facts about a controversial agent. Curr. Pharm. Des. 11, 233–253 (2005).Article 
CAS 
PubMed 

Google Scholar 
Zhang, M., Wang, Y., Qian, F., Li, P. & Xu, X. Hypericin inhibits oligomeric amyloid β42-induced inflammation response in microglia and ameliorates cognitive deficits in an amyloid β injection mouse model of Alzheimer’s disease by suppressing MKL1. Biochem. Biophys. Res. Commun. 481, 71–76 (2016).Article 
CAS 
PubMed 

Google Scholar 
Dong, X. et al. Emodin: A review of its pharmacology, toxicity and pharmacokinetics. Phytother. Res. 30, 1207–1218 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ho, T.-Y., Wu, S.-L., Chen, J.-C., Li, C.-C. & Hsiang, C.-Y. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Res. 74, 92–101 (2007).Article 
CAS 
PubMed 

Google Scholar 
Li, Z. et al. Neuroprotective effect of emodin against Alzheimer’s disease via Nrf2 signaling in U251 cells and APP/PS1 mice. Mol. Med. Rep. 23, 108 (2021).Article 
PubMed 

Google Scholar 
Wang, L. et al. Emodin inhibits aggregation of amyloid-β peptide 1–42 and improves cognitive deficits in Alzheimer’s disease transgenic mice. J. Neurochem. 157, 1992–2007 (2021).Article 
CAS 
PubMed 

Google Scholar 
Howlett, D. R., George, A. R., Owen, D. E., Ward, R. V. & Markwell, R. E. Common structural features determine the effectiveness of carvedilol, daunomycin and rolitetracycline as inhibitors of Alzheimer β-amyloid fibril formation. Biochem. J. 343, 419–423 (1999).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles