Aggregation-induced C–C bond formation on an electrode driven by the surface tension of water

Cai, X. & Liu, B. Aggregation-driven emission: recent advances in materials and biomedical applications. Angew. Chem. Int. Ed. 59, 9868–9886 (2020).Article 
CAS 

Google Scholar 
Duo, Y. et al. Aggregation-driven emission: an illuminator in the brain. Coord. Chem. Rev. 482, 215070 (2023).Article 
CAS 

Google Scholar 
Noël, T., Cao, Y. & Laudadio, G. The fundamentals behind the use of flow reactors in electrochemistry. Acc. Chem. Res. 52, 2858–2869 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Lu, S. et al. Mass transfer effect to electrochemical reduction of CO2: electrode, electrocatalyst and electrolyte. J. Energy Storage 52, 104764 (2022).Article 

Google Scholar 
Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Röckl, J. L., Pollok, D., Franke, R. & Waldvogel, S. R. A decade of electrochemical dehydrogenative C,C-coupling of aryls. Acc. Chem. Res. 53, 45–61 (2020).Article 
PubMed 

Google Scholar 
Novaes, L. F. T. et al. Electrocatalysis as an enabling technology for organic synthesis. Chem. Soc. Rev. 50, 7941–8002 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cheng, X. et al. Recent applications of homogeneous catalysis in electrochemical organic synthesis. CCS Chem. 4, 1120–1152 (2022).Article 
CAS 

Google Scholar 
Wang, Y. L. et al. Electrochemical late-stage functionalization. Chem. Rev. 123, 11269–11335 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zeng, L., Wang, J. X., Wang, D. X., Yi, H. & Lei, A. W. Comprehensive comparisons between directing and alternating current electrolysis in organic synthesis. Angew. Chem. Int. Ed. 62, e202309620 (2023).Article 
CAS 

Google Scholar 
Yin, Z. et al. CuPd nanoparticles as a robust catalyst for electrochemical allylic alkylation. Angew. Chem. Int. Ed. 59, 15933–15936 (2020).Article 
CAS 

Google Scholar 
Li, H. et al. σ-Alkynyl adsorption enables electrocatalytic semihydrogenation of terminal alkynes with easy-reducible/passivated groups over amorphous PdSx nanocapsules. J. Am. Chem. Soc. 144, 19456–19465 (2022).Article 
CAS 
PubMed 

Google Scholar 
Zhang, Y., Lin, Z. & Ackermann, L. Electrochemical C−H amidation of heteroarenes with N-Alkyl sulfonamides in aqueous medium. Chem. Eur. J. 27, 242–246 (2021).Article 
CAS 
PubMed 

Google Scholar 
Li, R. et al. One-pot H/D exchange and low-coordinated iron electrocatalyzed deuteration of nitriles in D2O to α,β-deuterio aryl ethylamines. Nat. Commun. 13, 5951 (2022).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
He, M. et al. Aqueous pulsed electrochemistry promotes C−N bond formation via a one-pot cascade approach. Nat. Commun. 14, 5088 (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rusling, J. F. Green synthesis via electrolysis in microemulsions. Pure Appl. Chem. 73, 1895–1905 (2001).Article 
CAS 

Google Scholar 
Wakisaka, M. & Kunitake, M. Direct electrochemical hydrogenation of toluene at Pt electrodes in a microemulsion electrolyte solution. Electrochem. Commun. 64, 5–8 (2016).Article 
CAS 

Google Scholar 
Chiba, K., Jinno, M., Nozaki, A. & Tada, M. Accelerated Diels–Alder reaction of quinones generated in situ by a modified electrode in an aqueous sodium dodecyl sulfate micellar system. Chem. Commun. 15, 1403–1404 (1997).Nishimoto, K., Kim, S., Kitano, Y., Tada, M. & Chiba, K. Rate enhancement of Diels−Alder reactions in aqueous perfluorinated emulsions. Org. Lett. 8, 5545–5547 (2006).Article 
CAS 
PubMed 

Google Scholar 
Nishimoto, K., Okada, Y., Kim, S. & Chiba, K. Rate acceleration of Diels–Alder reactions utilizing a fluorous micellar system in water. Electrochim. Acta 56, 10626–10631 (2011).Article 
CAS 

Google Scholar 
Tian, C., Massignan, L., Meyer, T. H. & Ackermann, L. Electrochemical C−H/N−H activation by water-tolerant cobalt catalysis at room temperature. Angew. Chem. Int. Ed. 57, 2383–2387 (2018).Article 
CAS 

Google Scholar 
Zhong, X. et al. Scalable flow electrochemical alcohol oxidation: maintaining high stereochemical fidelity in the synthesis of levetiracetam. Org. Process Res. Dev. 25, 2601–2607 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mikami, R., Shida, N. & Atobe, M. Integrated flow emulsion electrosynthetic system by in situ generation of emulsions, subsequent emulsion electrolysis, and final phase separation. Org. Process Res. Dev. 26, 1268–1278 (2022).Article 
CAS 

Google Scholar 
Sun, Y. et al. Highly selective electrocatalytic oxidation of amines to nitriles assisted by water oxidation on metal-doped α-Ni(OH)2. J. Am. Chem. Soc. 144, 15185–15192 (2022).Article 
CAS 
PubMed 

Google Scholar 
Li, M., Cheng, X. Electrochemical organic synthesis in aqueous media. Isr. J. Chem. 64, e202300067 (2023).Marken, F. & Wadhawan, J. D. Multiphase methods in organic electrosynthesis. Acc. Chem. Res. 52, 3325–3338 (2019).Article 
CAS 
PubMed 

Google Scholar 
Kitanosono, T. & Kobayashi, S. Synthetic organic “aquachemistry” that relies on neither cosolvents nor surfactants. ACS Cent. Sci. 7, 739–747 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shahid, M. Z., Usman, M. R., Akram, M. S., Khawaja, S. Y. & Afzal, W. Initial interfacial tension for various organic–water systems and study of the effect of solute concentration and temperature. J. Chem. Eng. Data 62, 1198–1203 (2017).Article 
CAS 

Google Scholar 
Jiang, H. R., Shyy, W., Wu, M. C., Zhang, R. H. & Zhao, T. S. A bi-porous graphite felt electrode with enhanced surface area and catalytic activity for vanadium redox flow batteries. Appl. Energy 233-234, 105–113 (2019).Article 
ADS 
CAS 

Google Scholar 
Ruiz-Lopez, M. F., Francisco, J. S., Martins-Costa, M. T. C. & Anglada, J. M. Molecular reactions at aqueous interfaces. Nat. Rev. Chem. 4, 459–475 (2020).Article 
CAS 
PubMed 

Google Scholar 
Yuan, Y. & Lei, A. Is electrosynthesis always green and advantageous compared to traditional methods? Nat. Commun. 11, 802 (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cortes-Clerget, M. et al. Water as the reaction medium in organic chemistry: from our worst enemy to our best friend. Chem. Sci. 12, 4237–4266 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Huang, X. et al. Methyl radical chemistry in non-oxidative methane activation over metal single sites. Nat. Commun. 14, 5716 (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sun, S.-Z. et al. Enantioselective decarboxylative alkylation using synergistic photoenzymatic catalysis. Nat. Catal. 7, 35–42 (2024).Article 
ADS 
CAS 

Google Scholar 
Xu, Y. et al. A light-driven enzymatic enantioselective radical acylation. Nature 625, 74–78 (2024).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Li, M., Zhang, T., Shi, Y. & Duan, C. Harnessing radicals in confined supramolecular environments made possible by MOFs. Chem. Rec. 23, e202300158 (2023).Article 
CAS 
PubMed 

Google Scholar 
Zheng, Y. & Wu, Y. Green method for preparing ticagrelor and its intermediate thereof. Chinese patent, CN115894496A, applicant: Shanghai Bioman Pharma Ltd. (2023).Cai, J. et al. Discovery of phenoxybutanoic acid derivatives as potent endothelin antagonists with antihypertensive activity. Biorg. Med. Chem. 23, 657–667 (2015).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles