µMap proximity labeling in living cells reveals stress granule disassembly mechanisms

Ripin, N. & Parker, R. Formation, function, and pathology of RNP granules. Cell 186, 4737–4756 (2023).Article 
CAS 
PubMed 

Google Scholar 
Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Protter, D. S. W. & Parker, R. Principles and properties of stress granules. Trends Cell Biol. 26, 668–679 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Buchan, J. R. & Parker, R. Eukaryotic stress granules: the ins and outs of translation. Mol. Cell 36, 932–941 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Van Leeuwen, W. et al. Identification of the stress granule transcriptome via RNA-editing in single cells and in vivo. Cell Rep. Methods 2, 100235 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Moon, S. L., Morisaki, T., Stasevich, T. J. & Parker, R. Coupling of translation quality control and mRNA targeting to stress granules. J. Cell Biol. 219, e202004120 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bussi, C. et al. Stress granules plug and stabilize damaged endolysosomal membranes. Nature 623, 1062–1069 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Amen, T. & Kaganovich, D. Stress granules inhibit fatty acid oxidation by modulating mitochondrial permeability. Cell Rep. 35, 109237 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fujikawa, D. et al. Stress granule formation inhibits stress-induced apoptosis by selectively sequestering executioner caspases. Curr. Biol. 33, 1967–1981 (2023).Article 
CAS 
PubMed 

Google Scholar 
Kedersha, N., Ivanov, P. & Anderson, P. Stress granules and cell signaling: more than just a passing phase? Trends Biochem. Sci. 38, 494–506 (2013).Article 
CAS 
PubMed 

Google Scholar 
Wolozin, B. & Ivanov, P. Stress granules and neurodegeneration. Nat. Rev. Neurosci. 20, 649–666 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Asadi, M. R. et al. Stress granules and neurodegenerative disorders: a scoping review. Front. Aging Neurosci. 13, 650740 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Repici, M. et al. The Parkinson’s disease-linked protein DJ-1 associates with cytoplasmic mRNP granules during stress and neurodegeneration. Mol. Neurobiol. 56, 61–77 (2019).Article 
CAS 
PubMed 

Google Scholar 
Taylor, J. P., Brown, R. H. & Cleveland, D. W. Decoding ALS: from genes to mechanism. Nature 539, 197–206 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Cui, Q. et al. Diverse CMT2 neuropathies are linked to aberrant G3BP interactions in stress granules. Cell 186, 803–820 (2023).Article 
CAS 
PubMed 

Google Scholar 
Wheeler, J. R., Matheny, T., Jain, S., Abrisch, R. & Parker, R. Distinct stages in stress granule assembly and disassembly. eLife 5, e18413 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Khong, A. et al. The stress granule transcriptome reveals principles of mRNA accumulation in stress granules. Mol. Cell 68, 808–820 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sanders, D. W. et al. Competing protein–RNA interaction networks control multiphase intracellular organization. Cell 181, 306–324 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hofmann, S., Kedersha, N., Anderson, P. & Ivanov, P. Molecular mechanisms of stress granule assembly and disassembly. Biochim. Biophys. Acta Mol. Cell Res. 1868, 118876 (2021).Article 
CAS 
PubMed 

Google Scholar 
Yang, P. et al. G3BP1 is a tunable switch that triggers phase separation to assemble stress granules. Cell 181, 325–345 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Keiten-Schmitz, J. et al. The nuclear SUMO-targeted ubiquitin quality control network regulates the dynamics of cytoplasmic stress granules. Mol. Cell 79, 54–67 (2020).Article 
CAS 
PubMed 

Google Scholar 
Zhang, X., Shu, X. E. & Qian, S.-B. O-GlcNAc modification of eIF4GI acts as a translational switch in heat shock response. Nat. Chem. Biol. 14, 909–916 (2018).Article 
CAS 
PubMed 

Google Scholar 
Gwon, Y. et al. Ubiquitination of G3BP1 mediates stress granule disassembly in a context-specific manner. Science 372, eabf6548 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tolay, N. & Buchberger, A. Comparative profiling of stress granule clearance reveals differential contributions of the ubiquitin system. Life Sci. Alliance 4, e202000927 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Markmiller, S. et al. Context-dependent and disease-specific diversity in protein interactions within stress granules. Cell 172, 590–604 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Teleanu, D. M. et al. An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases. Int. J. Mol. Sci. 23, 5938 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jain, S. et al. ATPase-modulated stress granules contain a diverse proteome and substructure. Cell 164, 487–498 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wheeler, J. R., Jain, S., Khong, A. & Parker, R. Isolation of yeast and mammalian stress granule cores. Methods 126, 12–17 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Youn, J.-Y. et al. High-density proximity mapping reveals the subcellular organization of mRNA-associated granules and bodies. Mol. Cell 69, 517–532 (2018).Article 
CAS 
PubMed 

Google Scholar 
Marmor-Kollet, H. et al. Spatiotemporal proteomic analysis of stress granule disassembly using APEX reveals regulation by SUMOylation and links to ALS pathogenesis. Mol. Cell 80, 876–891 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Qin, W. et al. Dynamic mapping of proteome trafficking within and between living cells by TransitID. Cell 186, 3307–3324 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Seath, C. P., Trowbridge, A. D., Muir, T. W. & MacMillan, D. W. C. Reactive intermediates for interactome mapping. Chem. Soc. Rev. 50, 2911–2926 (2021).Article 
CAS 
PubMed 

Google Scholar 
Geri, J. B. et al. Microenvironment mapping via Dexter energy transfer on immune cells. Science 367, 1091–1097 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
To, T.-L. et al. Photoactivatable protein labeling by singlet oxygen mediated reactions. Bioorg. Med. Chem. Lett. 26, 3359–3363 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Glasgow, H. L. et al. Laminin targeting of a peripheral nerve-highlighting peptide enables degenerated nerve visualization. Proc. Natl Acad. Sci. USA 113, 12774–12779 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Oakley, J. V. et al. Radius measurement via super-resolution microscopy enables the development of a variable radii proximity labeling platform. Proc. Natl Acad. Sci. USA 119, e2203027119 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Suzuki, S. et al. Photochemical identification of auxiliary severe acute respiratory syndrome coronavirus 2 host entry factors using μMap. J. Am. Chem. Soc. 144, 16604–16611 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Meyer, C. F. et al. Photoproximity labeling of sialylated glycoproteins (GlycoMap) reveals sialylation-dependent regulation of ion transport. J. Am. Chem. Soc. 144, 23633–23641 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Trowbridge, A. D. et al. Small molecule photocatalysis enables drug target identification via energy transfer. Proc. Natl Acad. Sci. USA 119, e2208077119 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Huth, S. W. et al. μMap photoproximity labeling enables small molecule binding site mapping. J. Am. Chem. Soc. 145, 16289–16296 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Seath, C. P. et al. Tracking chromatin state changes using nanoscale photo-proximity labelling. Nature 616, 574–580 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Los, G. V. et al. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 3, 373–382 (2008).Article 
CAS 
PubMed 

Google Scholar 
Cho, N. H. et al. OpenCell: endogenous tagging for the cartography of human cellular organization. Science 375, eabi6983 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fu, Y. & Zhuang, X. m6A-binding YTHDF proteins promote stress granule formation. Nat. Chem. Biol. 16, 955–963 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Das, S., Santos, L., Failla, A. V. & Ignatova, Z. mRNAs sequestered in stress granules recover nearly completely for translation. RNA Biol. 19, 877–884 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Moon, S. L. et al. Multicolour single-molecule tracking of mRNA interactions with RNP granules. Nat. Cell Biol. 21, 162–168 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Markmiller, S. et al. Active protein neddylation or ubiquitylation is dispensable for stress granule dynamics. Cell Rep. 27, 1356–1363 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Krause, L. J., Herrera, M. G. & Winklhofer, K. F. The role of ubiquitin in regulating stress granule dynamics. Front. Physiol. 13, 910759 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Maxwell, B. A. et al. Ubiquitination is essential for recovery of cellular activities after heat shock. Science 372, eabc3593 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hyer, M. L. et al. A small-molecule inhibitor of the ubiquitin activating enzyme for cancer treatment. Nat. Med. 24, 186–193 (2018).Article 
CAS 
PubMed 

Google Scholar 
Pierce, N. W., Kleiger, G., Shan, S. & Deshaies, R. J. Detection of sequential polyubiquitylation on a millisecond timescale. Nature 462, 615–619 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Weber, J., Polo, S. & Maspero, E. HECT E3 ligases: a tale with multiple facets. Front. Physiol. 10, 370 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Rotin, D. & Kumar, S. Physiological functions of the HECT family of ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 10, 398–409 (2009).Article 
CAS 
PubMed 

Google Scholar 
Buchan, J. R., Kolaitis, R.-M., Taylor, J. P. & Parker, R. Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell 153, 1461–1474 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Seguin, S. J. et al. Inhibition of autophagy, lysosome and VCP function impairs stress granule assembly. Cell Death Differ. 21, 1838–1851 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shaid, S., Brandts, C. H., Serve, H. & Dikic, I. Ubiquitination and selective autophagy. Cell Death Differ. 20, 21–30 (2013).Article 
CAS 
PubMed 

Google Scholar 
Haouari, S. et al. The roles of NEDD4 subfamily of HECT E3 ubiquitin ligases in neurodevelopment and neurodegeneration. Int. J. Med. Sci. 23, 3882 (2022).CAS 

Google Scholar 
Mund, T., Lewis, M. J., Maslen, S. & Pelham, H. R. Peptide and small molecule inhibitors of HECT-type ubiquitin ligases. Proc. Natl Acad. Sci. USA 111, 16736–16741 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yang, C. et al. Stress granule homeostasis is modulated by TRIM21-mediated ubiquitination of G3BP1 and autophagy-dependent elimination of stress granules. Autophagy 19, 1934–1951 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hayashi, Y. et al. TOLLIP acts as a cargo adaptor to promote lysosomal degradation of aberrant ER membrane proteins. EMBO J. 42, e114272 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, B. et al. ULK1 and ULK2 regulate stress granule disassembly through phosphorylation and activation of VCP/p97. Mol. Cell 74, 742–757 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mauvezin, C. & Neufeld, T. P. Bafilomycin A1 disrupts autophagic flux by inhibiting both V-ATPase-dependent acidification and Ca-P60A/SERCA-dependent autophagosome–lysosome fusion. Autophagy 11, 1437–1438 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liu, Q. et al. Discovery of 1-(4-(4-propionylpiperazin-1-yl)-3-(trifluoromethyl)phenyl)-9-(quinolin-3-yl)benzo[h][1,6]naphthyridin-2(1 H)-one as a highly potent, selective mammalian target of rapamycin (mTOR) inhibitor for the treatment of cancer. J. Med. Chem. 53, 7146–7155 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shoji-Kawata, S. et al. Identification of a candidate therapeutic autophagy-inducing peptide. Nature 494, 201–206 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Molliex, A. et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163, 123–133 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chua, J. P., De Calbiac, H., Kabashi, E. & Barmada, S. J. Autophagy and ALS: mechanistic insights and therapeutic implications. Autophagy 18, 254–282 (2022).Article 
CAS 
PubMed 

Google Scholar 
Lu, K., Psakhye, I. & Jentsch, S. Autophagic clearance of PolyQ proteins mediated by ubiquitin-Atg8 adaptors of the conserved CUET protein family. Cell 158, 549–563 (2014).Article 
CAS 
PubMed 

Google Scholar 
Querfurth, H. & Lee, H.-K. Mammalian/mechanistic target of rapamycin (mTOR) complexes in neurodegeneration. Mol. Neurodegener. 16, 44 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Demichev, V., Messner, C. B., Vernardis, S. I., Lilley, K. S. & Ralser, M. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat. Methods 17, 41–44 (2020).Article 
CAS 
PubMed 

Google Scholar 
Demichev, V. et al. dia-PASEF data analysis using FragPipe and DIA-NN for deep proteomics of low sample amounts. Nat. Commun. 13, 3944 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 (2016).Article 
CAS 
PubMed 

Google Scholar 
Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles