Direct inhibition of tumor hypoxia response with synthetic transcriptional repressors

Gatenby, R. A. & Gillies, R. J. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer 4, 891–899 (2004).Article 
CAS 
PubMed 

Google Scholar 
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).Article 
CAS 
PubMed 

Google Scholar 
Kim, J. W., Gao, P. & Dang, C. V. Effects of hypoxia on tumor metabolism. Cancer Metastasis Rev. 26, 291–298 (2007).Article 
PubMed 

Google Scholar 
Liao, D. & Johnson, R. S. Hypoxia: a key regulator of angiogenesis in cancer. Cancer Metastasis Rev. 26, 281–290 (2007).Article 
CAS 
PubMed 

Google Scholar 
Lee, A. H., Iwakoshi, N. N. & Glimcher, L. H. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol. Cell. Biol. 23, 7448–7459 (2003).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Godet, I. et al. Fate-mapping post-hypoxic tumor cells reveals a ROS-resistant phenotype that promotes metastasis. Nat. Commun. 10, 4862 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Semenza, G. L. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 3, 721–732 (2003).Article 
CAS 
PubMed 

Google Scholar 
Gilkes, D. M., Semenza, G. L. & Wirtz, D. Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nat. Rev. Cancer 14, 430–439 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rapisarda, A. & Melillo, G. Overcoming disappointing results with antiangiogenic therapy by targeting hypoxia. Nat. Rev. Clin. Oncol. 9, 378–390 (2012).Article 
CAS 
PubMed 

Google Scholar 
Chen, X. & Cubillos-Ruiz, J. R. Endoplasmic reticulum stress signals in the tumour and its microenvironment. Nat. Rev. Cancer 21, 71–88 (2021).Article 
CAS 
PubMed 

Google Scholar 
Avril, T., Vauleon, E. & Chevet, E. Endoplasmic reticulum stress signaling and chemotherapy resistance in solid cancers. Oncogenesis 6, e373 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, S. et al. The emerging role of XBP1 in cancer. Biomed. Pharmacother. 127, 110069 (2020).Article 
CAS 
PubMed 

Google Scholar 
Reinke, A. W., Baek, J., Ashenberg, O. & Keating, A. E. Networks of bZIP protein–protein interactions diversified over a billion years of evolution. Science 340, 730–734 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bersten, D. C., Sullivan, A. E., Peet, D. J. & Whitelaw, M. L. bHLH–PAS proteins in cancer. Nat. Rev. Cancer 13, 827–841 (2013).Article 
CAS 
PubMed 

Google Scholar 
Samanta, D., Gilkes, D. M., Chaturvedi, P., Xiang, L. & Semenza, G. L. Hypoxia-inducible factors are required for chemotherapy resistance of breast cancer stem cells. Proc. Natl Acad. Sci. USA 111, E5429–E5438 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lin, A. et al. The LINK-A lncRNA activates normoxic HIF1α signalling in triple-negative breast cancer. Nat. Cell Biol. 18, 213–224 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Briggs, K. J. et al. Paracrine induction of HIF by glutamate in breast cancer: EglN1 senses cysteine. Cell 166, 126–139 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhao, N. et al. Pharmacological targeting of Myc-regulated IRE1/XBP1 pathway suppresses Myc-driven breast cancer. J. Clin. Investig. 128, 1283–1299 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Ghosh, R. et al. Allosteric inhibition of the IRE1α RNase preserves cell viability and function during endoplasmic reticulum stress. Cell 158, 534–548 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, W. et al. Targeting renal cell carcinoma with a HIF-2 antagonist. Nature 539, 112–117 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wu, D., Potluri, N., Lu, J., Kim, Y. & Rastinejad, F. Structural integration in hypoxia-inducible factors. Nature 524, 303–308 (2015).Article 
CAS 
PubMed 

Google Scholar 
Wu, D. et al. Bidirectional modulation of HIF-2 activity through chemical ligands. Nat. Chem. Biol. 15, 367–376 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhuang, J., Shang, Q., Rastinejad, F. & Wu, D. Decoding allosteric control in hypoxia-inducible factors. J. Mol. Biol. 436, 168352 (2024).Article 
CAS 
PubMed 

Google Scholar 
Evans, R. M. & Mangelsdorf, D. J. Nuclear receptors, RXR, and the Big Bang. Cell 157, 255–266 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Khorasanizadeh, S. & Rastinejad, F. Visualizing the architectures and interactions of nuclear receptors. Endocrinology 157, 4212–4221 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Speltz, T. E. et al. Targeting Myc with modular synthetic transcriptional repressors derived from bHLH DNA-binding domains. Nat. Biotechnol. 41, 541–551 (2023).Article 
CAS 
PubMed 

Google Scholar 
Talanian, R. V., McKnight, C. J. & Kim, P. S. Sequence-specific DNA binding by a short peptide dimer. Science 249, 769–771 (1990).Article 
CAS 
PubMed 

Google Scholar 
Kouzarides, T. & Ziff, E. Leucine zippers of Fos, Jun and GCN4 dictate dimerization specificity and thereby control DNA binding. Nature 340, 568–571 (1989).Article 
CAS 
PubMed 

Google Scholar 
Canne, L. E., Ferre- D’Amare, A. R., Burley, S. K. & Kent, S. B. H. Total chemical synthesis of a unique transcription factor-related protein: cMyc–MAX. J. Am. Chem. Soc. 117, 2998–3007 (1995).Article 
CAS 

Google Scholar 
Metallo, S. J. & Schepartz, A. Certain bZIP peptides bind DNA sequentially as monomers and dimerize on the DNA. Nat. Struct. Biol. 4, 115–117 (1997).Article 
CAS 
PubMed 

Google Scholar 
Blancafort, P., Segal, D. J. & Barbas, C. F. 3rd Designing transcription factor architectures for drug discovery. Mol. Pharmacol. 66, 1361–1371 (2004).Article 
CAS 
PubMed 

Google Scholar 
Boga, S., Bouzada, D., Peña, D. G., Vázquez López, M. & Vázquez, M. E. Sequence-specific DNA recognition with designed peptides. Eur. J. Org. Chem. 2018, 249–261 (2018).Article 
CAS 

Google Scholar 
Chen, X. et al. XBP1 promotes triple-negative breast cancer by controlling the HIF1α pathway. Nature 508, 103–107 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Schafmeister, C. E., Po, J. & Verdine, G. L. An all-hydrocarbon cross-linking system for enchancing the helicity and metabolic stability of peptides. J. Am. Chem. Soc. 122, 5891–5892 (2000).Article 
CAS 

Google Scholar 
Mason, J. M., Schmitz, M. A., Muller, K. M. & Arndt, K. M. Semirational design of Jun–Fos coiled coils with increased affinity: universal implications for leucine zipper prediction and design. Proc. Natl Acad. Sci. USA 103, 8989–8994 (2006).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chu, Q. et al. Towards understanding cell penetration by stapled peptides. MedChemComm 6, 111–119 (2015).Article 
CAS 

Google Scholar 
Bird, G. H. et al. Biophysical determinants for cellular uptake of hydrocarbon-stapled peptide helices. Nat. Chem. Biol. 12, 845–852 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
LaRochelle, J. R., Cobb, G. B., Steinauer, A., Rhoades, E. & Schepartz, A. Fluorescence correlation spectroscopy reveals highly efficient cytosolic delivery of certain penta-Arg proteins and stapled peptides. J. Am. Chem. Soc. 137, 2536–2541 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Walensky, L. D. et al. Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 305, 1466–1470 (2004).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bernal, F., Tyler, A. F., Korsmeyer, S. J., Walensky, L. D. & Verdine, G. L. Reactivation of the p53 tumor suppressor pathway by a stapled p53 peptide. J. Am. Chem. Soc. 129, 2456–2457 (2007).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Moellering, R. E. et al. Direct inhibition of the NOTCH transcription factor complex. Nature 462, 182–188 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kong, X. D. et al. De novo development of proteolytically resistant therapeutic peptides for oral administration. Nat. Biomed. Eng. 4, 560–571 (2020).Article 
CAS 
PubMed 

Google Scholar 
Bird, G. H. et al. Hydrocarbon double-stapling remedies the proteolytic instability of a lengthy peptide therapeutic. Proc. Natl Acad. Sci. USA 107, 14093–14098 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yang, P. Y. et al. Stapled, long-acting glucagon-like peptide 2 analog with efficacy in dextran sodium sulfate induced mouse colitis models. J. Med. Chem. 61, 3218–3223 (2018).Article 
CAS 
PubMed 

Google Scholar 
Chang, Y. S. et al. Stapled α-helical peptide drug development: a potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy. Proc. Natl Acad. Sci. USA 110, E3445–E3454 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Guerlavais, V. et al. Discovery of sulanemadlin (ALRN-6924), the first cell-permeating, stabilized α-helical peptide in clinical development. J. Med. Chem. 66, 9401–9417 (2023).Article 
CAS 
PubMed 

Google Scholar 
Wang, G. L. & Semenza, G. L. Purification and characterization of hypoxia-inducible factor 1. J. Biol. Chem. 270, 1230–1237 (1995).Article 
CAS 
PubMed 

Google Scholar 
Ye, I. C. et al. Molecular portrait of hypoxia in breast cancer: a prognostic signature and novel HIF-regulated genes. Mol. Cancer Res 16, 1889–1901 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bianchini, G., Balko, J. M., Mayer, I. A., Sanders, M. E. & Gianni, L. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat. Rev. Clin. Oncol. 13, 674–690 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bharti, S. K. et al. Metabolic consequences of HIF silencing in a triple negative human breast cancer xenograft. Oncotarget 9, 15326–15339 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Vaupel, P., Mayer, A. & Hockel, M. Tumor hypoxia and malignant progression. Methods Enzymol. 381, 335–354 (2004).Article 
CAS 
PubMed 

Google Scholar 
Cosse, J. P. & Michiels, C. Tumour hypoxia affects the responsiveness of cancer cells to chemotherapy and promotes cancer progression. Anticancer Agents Med. Chem. 8, 790–797 (2008).Article 
CAS 
PubMed 

Google Scholar 
Minn, A. J. et al. Genes that mediate breast cancer metastasis to lung. Nature 436, 518–524 (2005).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Garralda, E. et al. Myc targeting by OMO-103 in solid tumors: a phase 1 trial. Nat. Med. 30, 762–771 (2024).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kim, Y. W., Grossmann, T. N. & Verdine, G. L. Synthesis of all-hydrocarbon stapled α-helical peptides by ring-closing olefin metathesis. Nat. Protoc. 6, 761–771 (2011).Article 
CAS 
PubMed 

Google Scholar 
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Nguyen, L. C. et al. Cannabidiol inhibits SARS-CoV-2 replication through induction of the host ER stress and innate immune responses. Sci. Adv. 8, eabi6110 (2022).Article 
CAS 
PubMed 

Google Scholar 
Kramer, A., Green, J., Pollard, J. Jr. & Tugendreich, S. Causal analysis approaches in Ingenuity pathway analysis. Bioinformatics 30, 523–530 (2014).Article 
PubMed 

Google Scholar 
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liberzon, A. et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 1, 417–425 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://doi.org/10.48550/arXiv.1303.3997 (2013).Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).Article 
PubMed 
PubMed Central 

Google Scholar 
Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ramirez, F., Dundar, F., Diehl, S., Gruning, B. A. & Manke, T. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 42, W187–W191 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles