Microbial electrodes | Nature Reviews Methods Primers

Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).Article 
ADS 

Google Scholar 
Harnisch F., Sleutels, T. & ter Heijne, A. Basic Electrochemistry for Biotechnology 1st edn (Wiley-VCH, 2023).Gralnick, J. A. & Bond, D. R. Electron transfer beyond the outer membrane: putting electrons to rest. Annu. Rev. Microbiol. 77, 517–539 (2023).Article 

Google Scholar 
Philipp, L. A., Bühler, K., Ulber, R. & Gescher, J. Beneficial applications of biofilms. Nat. Rev. Microbiol. 22, 276–290 (2023).Article 

Google Scholar 
Logan, B. E. et al. Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ. Sci. Technol. 42, 8630–8640 (2008).Article 
ADS 

Google Scholar 
Logan, B. E. et al. Microbial fuel cells: methodology and technology. Environ. Sci. Technol. 40, 5181–5192 (2006). Principles and overview of microbial fuel cells in the early stage of research, including well-explained thermodynamic calculations.Article 
ADS 

Google Scholar 
Hamelers, H. V. M. et al. New applications and performance of bioelectrochemical systems. Appl. Microbiol. Biotechnol. 85, 1673–1685 (2010).Article 

Google Scholar 
Wang, X. et al. Microbial electrochemistry for bioremediation. Environ. Sci. Ecotechnol. 1, 100013 (2020).Article 

Google Scholar 
Dominguez-Benetton, X. et al. Metal recovery by microbial electro-metallurgy. Prog. Mater. Sci. 94, 435–461 (2018). Review article on metal recovery using METs that includes challenges and future directions.Article 

Google Scholar 
Wang, H. & Ren, Z. J. A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnol. Adv. 31, 1796–1807 (2013).Article 

Google Scholar 
Rabaey, K. & Rozendal, R. A. Microbial electrosynthesis — revisiting the electrical route for microbial production. Nat. Rev. Microbiol. 8, 706–716 (2010).Article 

Google Scholar 
Sevda, S., Sreekishnan, T. R., Pous, N., Puig, S. & Pant, D. Bioelectroremediation of perchlorate and nitrate contaminated water: a review. Bioresour. Technol. 255, 331–339 (2018).Article 

Google Scholar 
Pant, D., Van Bogaert, G., Diels, L. & Vanbroekhoven, K. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour. Technol. 101, 1533–1543 (2010).Article 

Google Scholar 
Santoro, C., Bollella, P., Erable, B., Atanassov, P. & Pant, D. Oxygen reduction reaction electrocatalysis in neutral media for bioelectrochemical systems. Nat. Catal. 5, 473–484 (2022).Article 

Google Scholar 
Savla, N. et al. Recent advancements in the cathodic catalyst for the hydrogen evolution reaction in microbial electrolytic cells. Int. J. Hydrog. Energy 47, 15333–15356 (2022).Article 
ADS 

Google Scholar 
Santoro, C., Arbizzani, C., Erable, B. & Ieropoulos, I. Microbial fuel cells: from fundamentals to applications. A review. J. Power Sources 356, 225–244 (2017).Article 
ADS 

Google Scholar 
He, Z. & Angenent, L. T. Application of bacterial biocathodes in microbial fuel cells. Electroanalysis 18, 2009–2015 (2006).Article 

Google Scholar 
Jourdin, L. & Burdyny, T. Microbial electrosynthesis: where do we go from here? Trends Biotechnol. 39, 359–369 (2021).Article 

Google Scholar 
Van Eerten-Jansen, M. C. A. A. et al. Bioelectrochemical production of caproate and caprylate from acetate by mixed cultures. ACS Sustain. Chem. Eng. 1, 513–518 (2013).Article 

Google Scholar 
Bajracharya, S. et al. Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode. Bioresour. Technol. 195, 14–24 (2015).Article 

Google Scholar 
Cheng, S., Xing, D., Call, D. F. & Logan, B. E. Direct biological conversion of electrical current into methane by electromethanogenesis. Environ. Sci. Technol. 43, 3953–3958 (2009).Article 
ADS 

Google Scholar 
Boto, S. T., Bardl, B., Harnisch, F. & Rosenbaum, M. A. Microbial electrosynthesis with Clostridium ljungdahlii benefits from hydrogen electron mediation and permits a greater variety of products. Green Chem. 25, 4375–4386 (2023).Article 

Google Scholar 
Abdollahi, M., Al Sbei, S., Rosenbaum, M. A. & Harnisch, F. The oxygen dilemma: the challenge of the anode reaction for microbial electrosynthesis from CO2. Front. Microbiol. 13, 947550 (2022).Article 

Google Scholar 
Torres, C. I., Marcus, A. K., Parameswaran, P. & Rittmann, B. E. Kinetic experiments for evaluating the Nernst–Monod model for anode-respiring bacteria (ARB) in a biofilm anode. Environ. Sci. Technol. 42, 6593–6597 (2008).Article 
ADS 

Google Scholar 
Hamelers, H. V. M., ter Heijne, A., Stein, N., Rozendal, R. A. & Buisman, C. J. N. Butler–Volmer–Monod model for describing bio-anode polarization curves. Bioresour. Technol. 102, 381–387 (2011).Article 

Google Scholar 
Korth, B., Pereira, J., Sleutels, T., Harnisch, F. & ter Heijne, A. Comparing theoretical and practical biomass yields calls for revisiting thermodynamic growth models for electroactive microorganisms. Water Res. 242, 120279 (2023).Article 

Google Scholar 
Hamann, C. H., Hamnett, A. & Vielstich, W. Electrochemistry 2nd edn (Wiley-VCH, 2007).Yee, M. O., Deutzmann, J., Spormann, A. & Rotaru, A. E. Cultivating electroactive microbes—from field to bench. Nanotechnology 31, 174003 (2020).Article 
ADS 

Google Scholar 
Koch, C. & Harnisch, F. Is there a specific ecological niche for electroactive microorganisms? ChemElectroChem 3, 1282–1295 (2016).Article 

Google Scholar 
Dhar, B. R. & Lee, H. S. Membranes for bioelectrochemical systems: challenges and research advances. Environ. Technol. 34, 1751–1764 (2013).Article 

Google Scholar 
Harnisch, F., Schröder, U. & Scholz, F. The suitability of monopolar and bipolar ion exchange membranes as separators for biological fuel cells. Environ. Sci. Technol. 42, 1740–1746 (2008).Article 
ADS 

Google Scholar 
Koók, L. et al. Biofouling of membranes in microbial electrochemical technologies: causes, characterization methods and mitigation strategies. Bioresour. Technol. 279, 327–338 (2019).Article 

Google Scholar 
Krieg, T. et al. in Bioelectrosynthesis. Advances in Biochemical Engineering/Biotechnology, Vol. 167 (eds Harnisch, F. & Holtmann, D.) 231–271 (Springer, 2019).Liu, Z. et al. Recent progress on microbial electrosynthesis reactor designs and strategies to enhance the reactor performance. Biochem. Eng. J. 190, 108745 (2023).Article 

Google Scholar 
Krieg, T., Sydow, A., Schröder, U., Schrader, J. & Holtmann, D. Reactor concepts for bioelectrochemical syntheses and energy conversion. Trends Biotechnol. 32, 645–655 (2014).Article 

Google Scholar 
Schröder, U., Harnisch, F. & Angenent, L. T. Microbial electrochemistry and technology: terminology and classification. Energy Environ. Sci. 8, 513–519 (2015).Article 

Google Scholar 
Caizán-Juanarena, L., Servin-Balderas, I., Chen, X., Buisman, C. J. N. & ter Heijne, A. Electrochemical and microbiological characterization of single carbon granules in a multi-anode microbial fuel cell. J. Power Sources 435, 126514 (2019).Article 

Google Scholar 
Caizán-Juanarena, L., Sleutels, T., Borsje, C. & ter Heijne, A. Considerations for application of granular activated carbon as capacitive bioanode in bioelectrochemical systems. Renew. Energy 157, 782–792 (2020).Article 

Google Scholar 
Zhang, X., Prévoteau, A., Louro, R. O., Paquete, C. M. & Rabaey, K. Periodic polarization of electroactive biofilms increases current density and charge carriers concentration while modifying biofilm structure. Biosens. Bioelectron. 121, 183–191 (2018).Article 

Google Scholar 
Logan, B. E. Essential data and techniques for conducting microbial fuel cell and other types of bioelectrochemical system experiments. ChemSusChem 5, 988–994 (2012).Article 

Google Scholar 
Marsili, E. et al. Shewanella secretes flavins that mediate extracellular electron transfer. Proc. Natl Acad. Sci. USA 105, 3968–3973 (2008). To the best of our knowledge, this is the first paper on Shewanella proving its mediated EET for which it is now serving as model organism using different electrochemical techniques.Article 
ADS 

Google Scholar 
Fricke, K., Harnisch, F. & Schröder, U. On the use of cyclic voltammetry for the study of anodic electron transfer in microbial fuel cells. Energy Environ. Sci. 1, 144–147 (2008).Article 

Google Scholar 
Torres, C. I. et al. A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiol. Rev. 34, 3–17 (2010).Article 

Google Scholar 
Yoho, R. A. et al. in Biofilms in Bioelectrochemical Systems: From Laboratory Practice to Data Interpretation 1st edn (eds Beyenal, H. & Babauta, J. T.) Ch. 8 (Wiley, 2015).Kretzschmar, J. & Harnisch, F. Electrochemical impedance spectroscopy on biofilm electrodes – conclusive or euphonious? Curr. Opin. Electrochem. 29, 100757 (2021).Article 

Google Scholar 
Lovley, D. R. & Holmes, D. E. Electromicrobiology: the ecophysiology of phylogenetically diverse electroactive microorganisms. Nat. Rev. Microbiol. 20, 5–19 (2022).Article 

Google Scholar 
Harnisch, F. & Schröder, U. Selectivity versus mobility: separation of anode and cathode in microbial bioelectrochemical systems. ChemSusChem 2, 921–926 (2009).Article 

Google Scholar 
Yang, G., Mai, Q., Zhuang, Z. & Zhuang, L. Buffer capacity regulates the stratification of anode-respiring biofilm during brewery wastewater treatment. Environ. Res. 201, 111572 (2021).Article 

Google Scholar 
Vassilev, I., Dessì, P., Puig, S. & Kokko, M. Cathodic biofilms – a prerequisite for microbial electrosynthesis. Bioresour. Technol. 348, 126788 (2022).Article 

Google Scholar 
de Smit, S. M. et al. Methodology for in situ microsensor profiling of hydrogen, pH, oxidation–reduction potential, and electric potential throughout three-dimensional porous cathodes of (bio)electrochemical systems. Anal. Chem. 95, 2680–2689 (2023).Article 

Google Scholar 
Sandfeld, T. et al. Considerations on the use of microsensors to profile dissolved H2 concentrations in microbial electrochemical reactors. PLoS ONE 19, e0293734 (2024).Article 

Google Scholar 
Harnisch, F., Deutzmann, J. S., Boto, S. T. & Rosenbaum, M. A. Microbial electrosynthesis: opportunities for microbial pure cultures. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2024.02.004 (2024).Article 

Google Scholar 
Ledezma, P., Greenman, J. & Ieropoulos, I. Maximising electricity production by controlling the biofilm specific growth rate in microbial fuel cells. Bioresour. Technol. 118, 615–618 (2012).Article 

Google Scholar 
Sleutels, T. H. J. A., Hamelers, H. V. M., Rozendal, R. A. & Buisman, C. J. N. Ion transport resistance in microbial electrolysis cells with anion and cation exchange membranes. Int. J. Hydrog. Energy 34, 3612–3620 (2009).Article 
ADS 

Google Scholar 
Paquete, C. M., Rosenbaum, M. A., Bañeras, L., Rotaru, A. E. & Puig, S. Let’s chat: communication between electroactive microorganisms. Bioresour. Technol. 347, 126705 (2022).Article 

Google Scholar 
Gu, T., Wang, D., Lekbach, Y. & Xu, D. Extracellular electron transfer in microbial biocorrosion. Curr. Opin. Electrochem. 29, 100763 (2021).Article 

Google Scholar 
Naradasu, D., Miran, W., Sakamoto, M. & Okamoto, A. Isolation and characterization of human gut bacteria capable of extracellular electron transport by electrochemical techniques. Front. Microbiol. 10, 431549 (2019). Showcasing the omnipresence of electroactive microorganisms through isolation from the human gut microbiome.
Google Scholar 
Schwab, L., Rago, L., Koch, C. & Harnisch, F. Identification of Clostridium cochlearium as an electroactive microorganism from the mouse gut microbiome. Bioelectrochemistry 130, 107334 (2019).Article 

Google Scholar 
Dong, M., Nielsen, L. P., Yang, S., Klausen, L. H. & Xu, M. Cable bacteria: widespread filamentous electroactive microorganisms protecting environments. Trends Microbiol. https://doi.org/10.1016/j.tim.2023.12.001 (2023).Fu, T. et al. Bioinspired bio-voltage memristors. Nat. Commun. 11, 1861 (2020).Article 
ADS 

Google Scholar 
Li, Z. et al. Bacteria-based AND logic gate: a decision-making and self-powered biosensor. Chem. Commun. 47, 3060–3062 (2011).Article 

Google Scholar 
Digel, L. et al. Cable bacteria skeletons as catalytically active electrodes. Angew. Chem. Int. Ed. 63, e202312647 (2024).Article 

Google Scholar 
Chatterjee, P., Dessì, P., Kokko, M., Lakaniemi, A. M. & Lens, P. Selective enrichment of biocatalysts for bioelectrochemical systems: a critical review. Renew. Sustain. Energy Rev. 109, 10–23 (2019).Article 

Google Scholar 
Singh, R., Chaudhary, S., Yadav, S. & Patil, S. A. Protocol for bioelectrochemical enrichment, cultivation, and characterization of extreme electroactive microorganisms. STAR Protoc. 3, 101114 (2022).Article 

Google Scholar 
Pillot, G. et al. Specific enrichment of hyperthermophilic electroactive Archaea from deep-sea hydrothermal vent on electrically conductive support. Bioresour. Technol. 259, 304–311 (2018).Article 

Google Scholar 
Aiyer, K. & Doyle, L. E. Capturing the signal of weak electricigens: a worthy endeavour. Trends Biotechnol. 40, 564–575 (2022).Article 

Google Scholar 
Schröder, U. Discover the possibilities: microbial bioelectrochemical systems and the revival of a 100-year-old discovery. J. Solid State Electrochem. 15, 1481–1486 (2011).Article 

Google Scholar 
Aiken, D. C., Curtis, T. P. & Heidrich, E. S. Avenues to the financial viability of microbial electrolysis cells [MEC] for domestic wastewater treatment and hydrogen production. Int. J. Hydrog. Energy 44, 2426–2434 (2019).Article 
ADS 

Google Scholar 
Sleutels, T. H. J. A., ter Heijne, A., Buisman, C. J. N. & Hamelers, H. V. M. Bioelectrochemical systems: an outlook for practical applications. ChemSusChem 5, 1012–1019 (2012).Article 

Google Scholar 
Kretzschmar, J., Koch, C., Liebetrau, J., Mertig, M. & Harnisch, F. Electroactive biofilms as sensor for volatile fatty acids: cross sensitivity, response dynamics, latency and stability. Sens. Actuators B Chem. 241, 466–472 (2017).Article 
ADS 

Google Scholar 
Spurr, M. W. A., Yu, E. H., Scott, K. & Head, I. M. Extending the dynamic range of biochemical oxygen demand sensing with multi-stage microbial fuel cells. Environ. Sci. Water Res. Technol. 4, 2029–2040 (2018).Article 

Google Scholar 
Kumar, T., Naik, S. & Jujjavarappu, S. E. A critical review on early-warning electrochemical system on microbial fuel cell-based biosensor for on-site water quality monitoring. Chemosphere 291, 133098 (2022).Article 

Google Scholar 
Stein, N. E., Hamelers, H. V. M. & Buisman, C. N. J. Stabilizing the baseline current of a microbial fuel cell-based biosensor through overpotential control under non-toxic conditions. Bioelectrochemistry 78, 87–91 (2010).Article 

Google Scholar 
Geppert, F. et al. Bioelectrochemical power-to-gas: state of the art and future perspectives. Trends Biotechnol. 34, 879–894 (2016).Article 

Google Scholar 
Flynn, J. M., Ross, D. E., Hunt, K. A., Bond, D. R. & Gralnick, J. A. Enabling unbalanced fermentations by using engineered electrode-interfaced bacteria. mBio 1, e00190-10 (2010).Article 

Google Scholar 
Virdis, B. et al. Electro-fermentation: sustainable bioproductions steered by electricity. Biotechnol. Adv. 59, 107950 (2022).Article 

Google Scholar 
Vassilev, I., Averesch, N. J. H., Ledezma, P. & Kokko, M. Anodic electro-fermentation: empowering anaerobic production processes via anodic respiration. Biotechnol. Adv. 48, 107728 (2021).Article 

Google Scholar 
Sturm-Richter, K. et al. Unbalanced fermentation of glycerol in Escherichia coli via heterologous production of an electron transport chain and electrode interaction in microbial electrochemical cells. Bioresour. Technol. 186, 89–96 (2015).Article 

Google Scholar 
Moscoviz, R., Toledo-Alarcón, J., Trably, E. & Bernet, N. Electro-fermentation: how to drive fermentation using electrochemical systems. Trends Biotechnol. 34, 856–865 (2016). To the best of our knowledge, this is the first definition of electrofermentation, and so it is a must-read for all those endeavouring to investigate this exciting field.Article 

Google Scholar 
Rodríguez Arredondo, M. et al. Bioelectrochemical systems for nitrogen removal and recovery from wastewater. Environ. Sci. Water Res. Technol. 1, 22–33 (2015).Article 

Google Scholar 
Wu, X. & Modin, O. Ammonium recovery from reject water combined with hydrogen production in a bioelectrochemical reactor. Bioresour. Technol. 146, 530–536 (2013).Article 

Google Scholar 
Galeano, M. B. et al. Bioelectrochemical ammonium recovery from wastewater: a review. Chem. Eng. J. 472, 144855 (2023).Article 

Google Scholar 
Barbosa, S. G. et al. Investigating bacterial community changes and organic substrate degradation in microbial fuel cells operating on real human urine. Environ. Sci. Water Res. Technol. 3, 897–904 (2017).Article 

Google Scholar 
Rodríguez Arredondo, M., Kuntke, P., ter Heijne, A. & Buisman, C. J. The concept of load ratio applied to bioelectrochemical systems for ammonia recovery. J. Chem. Technol. Biotechnol. 94, 2055–2061 (2019).Article 

Google Scholar 
Ieropoulos, I., Greenman, J. & Melhuish, C. Urine utilisation by microbial fuel cells; energy fuel for the future. Phys. Chem. Chem. Phys. 14, 94–98 (2012).Article 

Google Scholar 
Kelly, P. T. & He, Z. Nutrients removal and recovery in bioelectrochemical systems: a review. Bioresour. Technol. 153, 351–360 (2014).Article 

Google Scholar 
Heijne, A. T. et al. Copper recovery combined with electricity production in a microbial fuel cell. Environ. Sci. Technol. 44, 4376–4381 (2010).Article 
ADS 

Google Scholar 
Yang, K. et al. Bioelectrochemical degradation of monoaromatic compounds: current advances and challenges. J. Hazard. Mater. 398, 122892 (2020).Article 

Google Scholar 
Vijay, A., Khandelwal, A., Chhabra, M. & Vincent, T. Microbial fuel cell for simultaneous removal of uranium (VI) and nitrate. Chem. Eng. J. 388, 124157 (2020).Article 

Google Scholar 
Elzinga, M. et al. Microbial reduction of organosulfur compounds at cathodes in bioelectrochemical systems. Environ. Sci. Ecotechnol. 1, 100009 (2020).Article 

Google Scholar 
Sulonen, M. L. K., Kokko, M. E., Lakaniemi, A. M. & Puhakka, J. A. Electricity generation from tetrathionate in microbial fuel cells by acidophiles. J. Hazard. Mater. 284, 182–189 (2015).Article 

Google Scholar 
Wang, H., Heil, D., Ren, Z. J. & Xu, P. Removal and fate of trace organic compounds in microbial fuel cells. Chemosphere 125, 94–101 (2015).Article 
ADS 

Google Scholar 
Wang, H., Luo, H., Fallgren, P. H., Jin, S. & Ren, Z. J. Bioelectrochemical system platform for sustainable environmental remediation and energy generation. Biotechnol. Adv. 33, 317–334 (2015).Article 

Google Scholar 
Leicester, D. D., Settle, S., McCann, C. M. & Heidrich, E. S. Investigating variability in microbial fuel cells. Appl. Environ. Microbiol. 89, e0218122 (2023).Article 

Google Scholar 
Hansen, S. H. et al. Machine-assisted cultivation and analysis of biofilms. Sci. Rep. 9, 8933 (2019).Article 
ADS 

Google Scholar 
Sportelli, M. C., Kranz, C., Mizaikoff, B. & Cioffi, N. Recent advances on the spectroscopic characterization of microbial biofilms: a critical review. Anal. Chim. Acta 1195, 339433 (2022).Article 

Google Scholar 
Molenaar, S. D. et al. In situ biofilm quantification in bioelectrochemical systems by using optical coherence tomography. ChemSusChem 11, 2171–2178 (2018).Article 

Google Scholar 
Pereira, J. et al. The effect of intermittent anode potential regimes on the morphology and extracellular matrix composition of electro-active bacteria. Biofilm 4, 100064 (2022).Article 

Google Scholar 
Guo, K. et al. Effects of surface charge and hydrophobicity on anodic biofilm formation, community composition, and current generation in bioelectrochemical systems. Environ. Sci. Technol. 47, 7563–7570 (2013).Article 
ADS 

Google Scholar 
Pereira, J. et al. Starvation combined with constant anode potential triggers intracellular electron storage in electro-active biofilms. Water Res. 242, 120278 (2023).Article 

Google Scholar 
Caizán-Juanarena, L. et al. 3D biofilm visualization and quantification on granular bioanodes with magnetic resonance imaging. Water Res. 167, 115059 (2019).Article 

Google Scholar 
Häuser, L. et al. In vivo characterization of electroactive biofilms inside porous electrodes with MR Imaging. RSC Adv. 12, 17784–17793 (2022).Article 
ADS 

Google Scholar 
de Rink, R. et al. Continuous electron shuttling by sulfide oxidizing bacteria as a novel strategy to produce electric current. J. Hazard. Mater. 424, 127358 (2022).Article 

Google Scholar 
Winkelhorst, M., Cabau-Peinado, O., Straathof, A. J. J. & Jourdin, L. Biomass-specific rates as key performance indicators: a nitrogen balancing method for biofilm-based electrochemical conversion. Front. Bioeng. Biotechnol. 11, 1096086 (2023).Article 

Google Scholar 
Rowe, A. R. et al. Identification of a pathway for electron uptake in Shewanella oneidensis. Commun. Biol. 4, 957 (2021).Article 

Google Scholar 
Flemming, H. C. et al. The biofilm matrix: multitasking in a shared space. Nat. Rev. Microbiol. 21, 70–86 (2023).Article 

Google Scholar 
Seneviratne, C. J. et al. Multi-omics tools for studying microbial biofilms: current perspectives and future directions. Crit. Rev. Microbiol. 46, 759–778 (2020).Article 

Google Scholar 
Pereira, J., de Nooy, S., Sleutels, T. & ter Heijne, A. Opportunities for visual techniques to determine characteristics and limitations of electro-active biofilms. Biotechnol. Adv. 60, 108011 (2022).Article 

Google Scholar 
Picioreanu, C., Head, I. M., Katuri, K. P., van Loosdrecht, M. C. M. & Scott, K. A computational model for biofilm-based microbial fuel cells. Water Res. 41, 2921–2940 (2007).Article 

Google Scholar 
Marcus, A. K., Torres, C. I. & Rittmann, B. E. Conduction-based modeling of the biofilm anode of a microbial fuel cell. Biotechnol. Bioeng. 98, 1171–1182 (2007).Article 

Google Scholar 
Dykstra, J. E., Biesheuvel, P. M., Bruning, H. & ter Heijne, A. Theory of ion transport with fast acid-base equilibrations in bioelectrochemical systems. Phys. Rev. E 90, 013302 (2014).Article 
ADS 

Google Scholar 
Korth, B., Rosa, L. F. M., Harnisch, F. & Picioreanu, C. A framework for modeling electroactive microbial biofilms performing direct electron transfer. Bioelectrochemistry 106, 194–206 (2015).Article 

Google Scholar 
Jiang, J. et al. Scale-up and techno-economic analysis of microbial electrolysis cells for hydrogen production from wastewater. Water Res. 241, 120139 (2023).Article 
ADS 

Google Scholar 
Santoro, C. et al. How comparable are microbial electrochemical systems around the globe? An electrochemical and microbiological cross-laboratory study. ChemSusChem 14, 2313–2330 (2021). Unique ring study in different laboratories to study the reproducibility of experimental results.Article 

Google Scholar 
Shi, L. et al. Extracellular electron transfer mechanisms between microorganisms and minerals. Nat. Rev. Microbiol. 14, 651–662 (2016).Article 

Google Scholar 
Rosenbaum, M., Aulenta, F., Villano, M. & Angenent, L. T. Cathodes as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are involved? Bioresour. Technol. 102, 324–333 (2011).Article 

Google Scholar 
Tremblay, P. L., Angenent, L. T. & Zhang, T. Extracellular electron uptake: among autotrophs and mediated by surfaces. Trends Biotechnol. 35, 360–371 (2017).Article 

Google Scholar 

Hot Topics

Related Articles