High throughput screening of airway constriction in mouse lung slices

Dandurand, R. J., Wang, C. G., Phillips, N. C. & Eidelman, D. H. Responsiveness of individual airways to methacholine in adult rat lung explants. J. Appl. Physiol. 1985(75), 364–372. https://doi.org/10.1152/jappl.1993.75.1.364 (1993).Article 

Google Scholar 
Rosner, S. R. et al. Airway contractility in the precision-cut lung slice after cryopreservation. Am. J. Respir. Cell Mol. Biol. 50, 876–881. https://doi.org/10.1165/rcmb.2013-0166MA (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Struckmann, N. et al. Role of muscarinic receptor subtypes in the constriction of peripheral airways: Studies on receptor-deficient mice. Mol. Pharmacol. 64, 1444–1451. https://doi.org/10.1124/mol.64.6.1444 (2003).Article 
CAS 
PubMed 

Google Scholar 
Yang, Z. et al. Beta-agonist-associated reduction in RGS5 expression promotes airway smooth muscle hyper-responsiveness. J. Biol. Chem. 286, 11444–11455. https://doi.org/10.1074/jbc.M110.212480 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Van Dijk, E. M., Culha, S., Menzen, M. H., Bidan, C. M. & Gosens, R. Elastase-induced parenchymal disruption and airway hyper responsiveness in mouse precision cut lung slices: Toward an ex vivo COPD model. Front. Physiol. 7, 657. https://doi.org/10.3389/fphys.2016.00657 (2016).Article 
PubMed 

Google Scholar 
Balenga, N. A. et al. A fungal protease allergen provokes airway hyper-responsiveness in asthma. Nat. Commun. 6, 6763. https://doi.org/10.1038/ncomms7763 (2015).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Martin, C., Uhlig, S. & Ullrich, V. Videomicroscopy of methacholine-induced contraction of individual airways in precision-cut lung slices. Eur. Respir. J. 9, 2479–2487. https://doi.org/10.1183/09031936.96.09122479 (1996).Article 
CAS 
PubMed 

Google Scholar 
Maarsingh, H. et al. Small airway hyperresponsiveness in COPD: Relationship between structure and function in lung slices. Am. J. Physiol. Lung Cell. Mol. Physiol. 316, L537–L546. https://doi.org/10.1152/ajplung.00325.2018 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Donovan, C., Royce, S. G., Vlahos, R. & Bourke, J. E. Lipopolysaccharide does not alter small airway reactivity in mouse lung slices. PLoS One 10, e0122069. https://doi.org/10.1371/journal.pone.0122069 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Parikh, V. et al. Rhinovirus C15 induces airway hyperresponsiveness via calcium mobilization in airway smooth muscle. Am. J. Respir. Cell Mol. Biol. 62, 310–318. https://doi.org/10.1165/rcmb.2019-0004OC (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, J. et al. Orosomucoid-like 3 (ORMDL3) upregulates airway smooth muscle proliferation, contraction, and Ca(2+) oscillations in asthma. J. Allergy Clin. Immunol. 142, 207–218. https://doi.org/10.1016/j.jaci.2017.08.015 (2018).Article 
CAS 
PubMed 

Google Scholar 
Rosner, S. R. et al. The actin regulator zyxin reinforces airway smooth muscle and accumulates in airways of fatal asthmatics. PLoS One 12, e0171728. https://doi.org/10.1371/journal.pone.0171728 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cook, D. P. et al. Cystic fibrosis transmembrane conductance regulator in sarcoplasmic reticulum of airway smooth muscle. Implications for airway contractility. Am. J. Respir. Crit. Care Med. 193, 417–426. https://doi.org/10.1164/rccm.201508-1562OC (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kistemaker, L. E. M. et al. The PDE4 inhibitor CHF-6001 and LAMAs inhibit bronchoconstriction-induced remodeling in lung slices. Am. J. Physiol. Lung Cell. Mol. Physiol. 313, L507–L515. https://doi.org/10.1152/ajplung.00069.2017 (2017).Article 
PubMed 

Google Scholar 
Martin, C., Ullrich, V. & Uhlig, S. Effects of the thromboxane receptor agonist U46619 and endothelin-1 on large and small airways. Eur. Respir. J. 16, 316–323 (2000).Article 
CAS 
PubMed 

Google Scholar 
Donovan, C., Seow, H. J., Bourke, J. E. & Vlahos, R. Influenza A virus infection and cigarette smoke impair bronchodilator responsiveness to beta-adrenoceptor agonists in mouse lung. Clin. Sci. (Lond) 130, 829–837. https://doi.org/10.1042/CS20160093 (2016).Article 
CAS 
PubMed 

Google Scholar 
van den Berg, M. P. M. et al. The novel TRPA1 antagonist BI01305834 inhibits ovalbumin-induced bronchoconstriction in guinea pigs. Respir. Res. 22, 48. https://doi.org/10.1186/s12931-021-01638-7 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zuo, H. et al. Cigarette smoke up-regulates PDE3 and PDE4 to decrease cAMP in airway cells. Br. J. Pharmacol. 175, 2988–3006. https://doi.org/10.1111/bph.14347 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tigges, J., Worek, F., Thiermann, H. & Wille, T. Organophosphorus pesticides exhibit compound specific effects in rat precision-cut lung slices (PCLS): Mechanisms involved in airway response, cytotoxicity, inflammatory activation and antioxidative defense. Arch. Toxicol. https://doi.org/10.1007/s00204-021-03186-x (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Kennedy, J. L. et al. Effects of rhinovirus 39 infection on airway hyperresponsiveness to carbachol in human airways precision cut lung slices. J. Allergy Clin. Immunol. 141, 1887–1890. https://doi.org/10.1016/j.jaci.2017.11.041 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zeng, Z. et al. Inherent differences of small airway contraction and Ca(2+) oscillations in airway smooth muscle cells between BALB/c and C57BL/6 mouse strains. Front. Cell Dev. Biol. 11, 1202573. https://doi.org/10.3389/fcell.2023.1202573 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Donovan, C. et al. Differential effects of allergen challenge on large and small airway reactivity in mice. PLoS One 8, e74101. https://doi.org/10.1371/journal.pone.0074101 (2013).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kim, H. J. et al. Airway smooth muscle sensitivity to methacholine in precision-cut lung slices (PCLS) from ovalbumin-induced asthmatic mice. Korean J. Physiol. Pharmacol. 19, 65–71. https://doi.org/10.4196/kjpp.2015.19.1.65 (2015).Article 
CAS 
PubMed 

Google Scholar 
Liu, G. et al. Airway remodelling and inflammation in asthma are dependent on the extracellular matrix protein fibulin-1c. J. Pathol. 243, 510–523. https://doi.org/10.1002/path.4979 (2017).Article 
CAS 
PubMed 

Google Scholar 
Yocum, G. T. et al. Role of transient receptor potential vanilloid 1 in the modulation of airway smooth muscle tone and calcium handling. Am. J. Physiol. Lung Cell. Mol. Physiol. 312, L812–L821. https://doi.org/10.1152/ajplung.00064.2017 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Chen, J. & Sanderson, M. J. Store-operated calcium entry is required for sustained contraction and Ca(2+) oscillations of airway smooth muscle. J. Physiol. 595, 3203–3218. https://doi.org/10.1113/JP272694 (2017).Article 
CAS 
PubMed 

Google Scholar 
Bergner, A. & Sanderson, M. J. Acetylcholine-induced calcium signaling and contraction of airway smooth muscle cells in lung slices. J. Gen. Physiol. 119, 187–198. https://doi.org/10.1085/jgp.119.2.187 (2002).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Perez, J. F. & Sanderson, M. J. The frequency of calcium oscillations induced by 5-HT, ACH, and KCl determine the contraction of smooth muscle cells of intrapulmonary bronchioles. J. Gen. Physiol. 125, 535–553. https://doi.org/10.1085/jgp.200409216 (2005).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bai, Y., Zhang, M. & Sanderson, M. J. Contractility and Ca2+ signaling of smooth muscle cells in different generations of mouse airways. Am. J. Respir. Cell Mol. Biol. 36, 122–130. https://doi.org/10.1165/rcmb.2006-0036OC (2007).Article 
CAS 
PubMed 

Google Scholar 
Perez-Zoghbi, J. F. & Sanderson, M. J. Endothelin-induced contraction of bronchiole and pulmonary arteriole smooth muscle cells is regulated by intracellular Ca2+ oscillations and Ca2+ sensitization. Am. J. Physiol. Lung Cell. Mol. Physiol. 293, L1000–L1011. https://doi.org/10.1152/ajplung.00184.2007 (2007).Article 
CAS 
PubMed 

Google Scholar 
Bergner, A. & Sanderson, M. J. Airway contractility and smooth muscle Ca(2+) signaling in lung slices from different mouse strains. J. Appl. Physiol. 1985(95), 1325–1332. https://doi.org/10.1152/japplphysiol.00272.2003 (2003).Article 

Google Scholar 
Bai, Y. et al. Cryopreserved human precision-cut lung slices as a bioassay for live tissue banking. A viability study of bronchodilation with bitter-taste receptor agonists. Am. J. Respir. Cell Mol. Biol. 54, 656–663. https://doi.org/10.1165/rcmb.2015-0290MA (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bourke, J. E. et al. Novel small airway bronchodilator responses to rosiglitazone in mouse lung slices. Am. J. Respir. Cell Mol. Biol. 50, 748–756. https://doi.org/10.1165/rcmb.2013-0247OC (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Donovan, C. et al. Rosiglitazone is a superior bronchodilator compared to chloroquine and beta-adrenoceptor agonists in mouse lung slices. Respir. Res. 15, 29. https://doi.org/10.1186/1465-9921-15-29 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
FitzPatrick, M., Donovan, C. & Bourke, J. E. Prostaglandin E2 elicits greater bronchodilation than salbutamol in mouse intrapulmonary airways in lung slices. Pulm. Pharmacol. Ther. 28, 68–76. https://doi.org/10.1016/j.pupt.2013.11.005 (2014).Article 
CAS 
PubMed 

Google Scholar 
Tan, X. & Sanderson, M. J. Bitter tasting compounds dilate airways by inhibiting airway smooth muscle calcium oscillations and calcium sensitivity. Br. J. Pharmacol. 171, 646–662. https://doi.org/10.1111/bph.12460 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ma, B., Sanderson, M. & Bates, J. H. Airway-parenchymal interdependence in the lung slice. Respir. Physiol. Neurobiol. 185, 211–216. https://doi.org/10.1016/j.resp.2012.10.015 (2013).Article 
PubMed 

Google Scholar 
Perez-Zoghbi, J. F., Bai, Y. & Sanderson, M. J. Nitric oxide induces airway smooth muscle cell relaxation by decreasing the frequency of agonist-induced Ca2+ oscillations. J. Gen. Physiol. 135, 247–259. https://doi.org/10.1085/jgp.200910365 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Boucher, M., Henry, C., Dufour-Mailhot, A., Khadangi, F. & Bossé, Y. Smooth muscle hypocontractility and airway normoresponsiveness in a mouse model of pulmonary allergic inflammation. Front. Physiol. 12, 698019. https://doi.org/10.3389/fphys.2021.698019 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Ijpma, G. et al. Intrapulmonary airway smooth muscle is hyperreactive with a distinct proteome in asthma. Eur. Respir. J. 56, 1902178. https://doi.org/10.1183/13993003.02178-2019 (2020).Article 
PubMed 

Google Scholar 
Ijpma, G. et al. Human trachealis and main bronchi smooth muscle are normoresponsive in asthma. Am. J. Respir. Crit. Care Med. 191, 884–893. https://doi.org/10.1164/rccm.201407-1296OC (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Goldie, R. G., Spina, D., Henry, P. J., Lulich, K. M. & Paterson, J. W. In vitro responsiveness of human asthmatic bronchus to carbachol, histamine, beta-adrenoceptor agonists and theophylline. Br. J. Clin. Pharmacol. 22, 669–676 (1986).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bai, T. R. Abnormalities in airway smooth muscle in fatal asthma. Am. Rev. Respir. Dis. 141, 552–557 (1990).Article 
CAS 
PubMed 

Google Scholar 
Bai, T. R. Abnormalities in airway smooth muscle in fatal asthma. A comparison between trachea and bronchus. Am. Rev. Respir. Dis. 143, 441–443 (1991).Article 
CAS 
PubMed 

Google Scholar 
Whicker, S. D., Armour, C. L. & Black, J. L. Responsiveness of bronchial smooth muscle from asthmatic patients to relaxant and contractile agonists. Pulm. Pharmacol. 1, 25–31 (1988).Article 
CAS 
PubMed 

Google Scholar 
Van Koppen, C. J. et al. Muscarinic receptor sensitivity in airway smooth muscle of patients with obstructive airway disease. Arch. Int. Pharmacodyn. Ther. 295, 238–244 (1988).PubMed 

Google Scholar 
Bourke, J. et al. The calcium-sensing receptor CaSR mediates airway contraction in a house dust mite model of allergic airway disease. Eur. Respir. J. 54, PA3884. https://doi.org/10.1183/13993003.congress-2019.PA3884 (2019).Article 

Google Scholar 
Gill, R., Rojas-Ruiz, A., Boucher, M., Henry, C. & Bossé, Y. More airway smooth muscle in males versus females in a mouse model of asthma: A blessing in disguise?. Exp. Physiol. 108, 1080–1091. https://doi.org/10.1113/EP091236 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Card, J. W. et al. Male sex hormones promote vagally mediated reflex airway responsiveness to cholinergic stimulation. Am. J. Physiol. Lung Cell. Mol. Physiol. 292, L908–L914. https://doi.org/10.1152/ajplung.00407.2006 (2007).Article 
CAS 
PubMed 

Google Scholar 
Boucher, M., Henry, C. & Bosse, Y. Force adaptation through the intravenous route in naive mice. Exp. Lung Res. 49, 131–141. https://doi.org/10.1080/01902148.2023.2237127 (2023).Article 
PubMed 

Google Scholar 
Bossé, Y. & Paré, P. D. The contractile properties of airway smooth muscle: How their defects can be linked to asthmatic airway hyperresponsiveness?. Curr. Respir. Med. Rev. 9, 42–68 (2013).Article 

Google Scholar 
Weinmann, G. G., Black, C. M., Levitt, R. C. & Hirshman, C. A. In vitro tracheal responses from mice chosen for in vivo lung cholinergic sensitivity. J. Appl. Physiol. 1985(69), 274–280. https://doi.org/10.1152/jappl.1990.69.1.274 (1990).Article 

Google Scholar 
Armour, C. L., Black, J. L., Berend, N. & Woolcock, A. J. The relationship between bronchial hyperresponsiveness to methacholine and airway smooth muscle structure and reactivity. Respir. Physiol. 58, 223–233 (1984).Article 
CAS 
PubMed 

Google Scholar 
Armour, C. L. et al. A comparison of in vivo and in vitro human airway reactivity to histamine. Am. Rev. Respir. Dis. 129, 907–910 (1984).CAS 
PubMed 

Google Scholar 
Cerrina, J. et al. Comparison of human bronchial muscle responses to histamine in vivo with histamine and isoproterenol agonists in vitro. Am. Rev. Respir. Dis. 134, 57–61 (1986).CAS 
PubMed 

Google Scholar 
Taylor, S. M., Pare, P. D., Armour, C. L., Hogg, J. C. & Schellenberg, R. R. Airway reactivity in chronic obstructive pulmonary disease. Failure of in vivo methacholine responsiveness to correlate with cholinergic, adrenergic, or nonadrenergic responses in vitro. Am. Rev. Respir. Dis. 132, 30–35. https://doi.org/10.1164/arrd.1985.132.1.30 (1985).Article 
CAS 
PubMed 

Google Scholar 
de Jongste, J. C. et al. Comparison of maximal bronchoconstriction in vivo and airway smooth muscle responses in vitro in nonasthmatic humans. Am. Rev. Respir. Dis. 138, 321–326. https://doi.org/10.1164/ajrccm/138.2.321 (1988).Article 
PubMed 

Google Scholar 
Thomson, N. C. In vivo versus in vitro human airway responsiveness to different pharmacologic stimuli. Am. Rev. Respir. Dis. 136, S58–S62. https://doi.org/10.1164/ajrccm/136.4_Pt_2.S58 (1987).Article 
CAS 
PubMed 

Google Scholar 
Roberts, J. A., Rodger, I. W. & Thomson, N. C. In vivo and in vitro human airway responsiveness to leukotriene D4 in patients without asthma. J. Allergy Clin. Immunol. 80, 688–694. https://doi.org/10.1016/0091-6749(87)90288-0 (1987).Article 
CAS 
PubMed 

Google Scholar 
Dame Carroll, J. R., Magnussen, J. S., Berend, N., Salome, C. M. & King, G. G. Greater parallel heterogeneity of airway narrowing and airway closure in asthma measured by high-resolution CT. Thorax 70, 1163–1170. https://doi.org/10.1136/thoraxjnl-2014-206387 (2015).Article 
CAS 
PubMed 

Google Scholar 
Downie, S. R. et al. Ventilation heterogeneity is a major determinant of airway hyperresponsiveness in asthma, independent of airway inflammation. Thorax 62, 684–689. https://doi.org/10.1136/thx.2006.069682 (2007).Article 
PubMed 
PubMed Central 

Google Scholar 
Farrow, C. E. et al. Peripheral ventilation heterogeneity determines the extent of bronchoconstriction in asthma. J. Appl. Physiol. 1985(123), 1188–1194. https://doi.org/10.1152/japplphysiol.00640.2016 (2017).Article 
CAS 

Google Scholar 
Hardaker, K. M. et al. Predictors of airway hyperresponsiveness differ between old and young patients with asthma. Chest 139, 1395–1401. https://doi.org/10.1378/chest.10-1839 (2011).Article 
PubMed 

Google Scholar 
King, G. G. et al. Heterogeneity of narrowing in normal and asthmatic airways measured by HRCT. Eur. Respir. J. 24, 211–218 (2004).Article 
CAS 
PubMed 

Google Scholar 
Lutchen, K. R., Hantos, Z., Petak, F., Adamicza, A. & Suki, B. Airway inhomogeneities contribute to apparent lung tissue mechanics during constriction. J. Appl. Physiol. 1985(80), 1841–1849 (1996).Article 

Google Scholar 
Petak, F., Hantos, Z., Adamicza, A., Asztalos, T. & Sly, P. D. Methacholine-induced bronchoconstriction in rats: Effects of intravenous vs. aerosol delivery. J. Appl. Physiol. 82, 1479–1487. https://doi.org/10.1152/jappl.1997.82.5.1479 (1997).Article 
CAS 
PubMed 

Google Scholar 
Chapman, D. G., Berend, N., King, G. G. & Salome, C. M. Increased airway closure is a determinant of airway hyperresponsiveness. Eur. Respir. J. 32, 1563–1569 (2008).Article 
CAS 
PubMed 

Google Scholar 
Farrow, C. E. et al. Airway closure on imaging relates to airway hyperresponsiveness and peripheral airway disease in asthma. J. Appl. Physiol. 113, 958–966. https://doi.org/10.1152/japplphysiol.01618.2011 (2012).Article 
PubMed 
PubMed Central 

Google Scholar 
Wagers, S., Lundblad, L. K., Ekman, M., Irvin, C. G. & Bates, J. H. The allergic mouse model of asthma: Normal smooth muscle in an abnormal lung?. J. Appl. Physiol. 96, 2019–2027 (2004).Article 
PubMed 

Google Scholar 
Boucher, M., Henry, C., Khadangi, F., Dufour-Mailhot, A. & Bossé, Y. Double-chamber plethysmography versus oscillometry to detect baseline airflow obstruction in a model of asthma in two mouse strains. Exp. Lung Res. 47, 390–401. https://doi.org/10.1080/01902148.2021.1979693 (2021).Article 
CAS 
PubMed 

Google Scholar 
Sahu, N., Morales, J. L., Fowell, D. & August, A. Modeling susceptibility versus resistance in allergic airway disease reveals regulation by Tec kinase Itk. PLoS One 5, e11348. https://doi.org/10.1371/journal.pone.0011348 (2010).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hammer, N. et al. Sample size considerations in soft tissue biomechanics. Acta Biomater. 169, 168–178. https://doi.org/10.1016/j.actbio.2023.07.036 (2023).Article 
PubMed 

Google Scholar 
Schönbrodt, F. D. & Perugini, M. At what sample size do correlations stabilize?. J. Res. Pers. 47, 609–612 (2013).Article 

Google Scholar 

Hot Topics

Related Articles