Twinned neuroimaging analysis contributes to improving the classification of young people with autism spectrum disorder

Ahammed, M. S. et al. DarkASDNet: Classification of ASD on functional MRI using deep neural network. Front. Neuroinform. 15, 635657. https://doi.org/10.3389/fninf.2021.635657 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Han, J., Jiang, G., Ouyang, G. & Li, X. A multimodal approach for identifying autism spectrum disorders in children. IEEE Trans. Neural Syst. Rehabil. Eng. 30, 2003–2011. https://doi.org/10.1109/TNSRE.2022.3192431 (2022).Article 
PubMed 

Google Scholar 
Kong, Y. et al. Classification of autism spectrum disorder by combining brain connectivity and deep neural network classifier. Neurocomputing 324, 63–68. https://doi.org/10.1016/j.neucom.2018.04.080 (2019).Article 

Google Scholar 
Maenner, M. J. et al. Prevalence and characteristics of autism spectrum disorder among children aged 8 years: Autism and developmental disabilities monitoring network, 11 sites, United States, 2020. MMWR Surveill Summ 72(2), 1–14. https://doi.org/10.15585/mmwr.ss7202a1 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Ha, S., Sohn, I. J., Kim, N., Sim, H. J. & Cheon, K. A. Characteristics of brains in autism spectrum disorder: Structure, function and connectivity across the lifespan. Exp. Neurobiol. 24(4), 273–84. https://doi.org/10.5607/en.2015.24.4.273 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Fernell, E., Eriksson, M. A. & Gillberg, C. Early diagnosis of autism and impact on prognosis: A narrative review. Clin. Epidemiol. 5, 33–43. https://doi.org/10.2147/CLEP.S41714 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
Arutiunian, V. et al. Structural brain abnormalities and their association with language impairment in school-aged children with Autism Spectrum Disorder. Sci. Rep. 13(1), 1172. https://doi.org/10.1038/s41598-023-28463-w (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhao, X. et al. Abnormalities of gray matter volume and its correlation with clinical symptoms in adolescents with high-functioning autism spectrum disorder. Neuropsychiatr. Dis. Treat. 18, 717–30. https://doi.org/10.2147/ndt.S349247 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Sun, F., Chen, Y., Gao, Q. & Zhao, Z. Abnormal gray matter structure in children and adolescents with high-functioning autism spectrum disorder. Psychiatry Res. Neuroimaging 327, 111564. https://doi.org/10.1016/j.pscychresns.2022.111564 (2022).Article 
PubMed 

Google Scholar 
Noriega, G. Restricted, repetitive, and stereotypical patterns of behavior in autism—An fMRI perspective. IEEE Trans. Neural Syst. Rehabil. Eng. 27, 1139–1148 (2019).Article 
PubMed 

Google Scholar 
Borràs-Ferrís, L., Pérez-Ramírez, Ú. & Moratal, D. Link-level functional connectivity neuroalterations in autism spectrum disorder: A developmental resting-state fMRI study. Diagnostics 9(1), 32. https://doi.org/10.3390/diagnostics9010032 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Wang, Y. et al. Social brain network of children with autism spectrum disorder: Characterization of functional connectivity and potential association with stereotyped behavior. Brain Sci. https://doi.org/10.3390/brainsci13020280 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Dichter, G. S. Functional magnetic resonance imaging of autism spectrum disorders. Dialogues Clin. Neurosci. 14(3), 319–351. https://doi.org/10.31887/DCNS.2012.14.3/gdichter.PubMedPMID:23226956;PubMedCentralPMCID:PMC3513685 (2012).Article 
PubMed 
PubMed Central 

Google Scholar 
Kim, S. Y. et al. Abnormal activation of the social brain network in children with autism spectrum disorder: an FMRI study. Psychiatry Investig. 12(1), 37–45. https://doi.org/10.4306/pi.2015.12.1.37 (2015).Article 
PubMed 

Google Scholar 
Wang, Q. et al. Resting-state abnormalities in functional connectivity of the default mode network in autism spectrum disorder: A meta-analysis. Brain Imaging Behav. 15, 2583–2592 (2021).Article 
PubMed 

Google Scholar 
Mohammad-Rezazadeh, I., Frohlich, J., Loo, S. K. & Jeste, S. S. Brain connectivity in autism spectrum disorder. Curr. Opin. Neurol. 29(2), 137–147. https://doi.org/10.1097/wco.0000000000000301 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Maximo, J. O., Cadena, E. J. & Kana, R. K. The implications of brain connectivity in the neuropsychology of autism. Neuropsychol. Rev. 24(1), 16–31. https://doi.org/10.1007/s11065-014-9250-0 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Minshew, N. J. & Keller, T. A. The nature of brain dysfunction in autism: Functional brain imaging studies. Curr. Opin. Neurol. 23(2), 124–130. https://doi.org/10.1097/WCO.0b013e32833782d4.PubMedPMID:20154614;PubMedCentralPMCID:PMC2975255 (2010).Article 
PubMed 
PubMed Central 

Google Scholar 
Haghighat, H., Mirzarezaee, M., Araabi, B. N. & Khadem, A. Functional networks abnormalities in autism spectrum disorder: Age-related hypo and hyper connectivity. Brain Topogr. 34(3), 306–322. https://doi.org/10.1007/s10548-021-00831-7 (2021).Article 
PubMed 

Google Scholar 
Kana, R. K., Uddin, L. Q., Kenet, T., Chugani, D. & Müller, R.-A. Brain connectivity in autism. Front. Hum. Neurosci. https://doi.org/10.3389/fnhum.2014.00349 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Lombardo, M. V. et al. Default mode-visual network hypoconnectivity in an autism subtype with pronounced social visual engagement difficulties. eLife 8, e47427. https://doi.org/10.7554/eLife.47427 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Uddin, L. Q., Supekar, K. & Menon, V. Reconceptualizing functional brain connectivity in autism from a developmental perspective. Front. Hum. Neurosci. https://doi.org/10.3389/fnhum.2013.00458 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
Snyder, W. & Troiani, V. Behavioural profiling of autism connectivity abnormalities. BJPsych Open 6(1), e11. https://doi.org/10.1192/bjo.2019.102 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Santana, C. P. et al. rs-fMRI and machine learning for ASD diagnosis: A systematic review and meta-analysis. Sci. Rep. 12(1), 6030. https://doi.org/10.1038/s41598-022-09821-6 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Khodatars, M. et al. Deep learning for neuroimaging-based diagnosis and rehabilitation of Autism Spectrum Disorder: A review. Comput. Biol. Med. 139, 104949. https://doi.org/10.1016/j.compbiomed.2021.104949 (2021).Article 
PubMed 

Google Scholar 
Ren, P. et al. Stratifying ASD and characterizing the functional connectivity of subtypes in resting-state fMRI. Behav. Brain Res. 449, 114458. https://doi.org/10.1016/j.bbr.2023.114458 (2023).Article 
PubMed 

Google Scholar 
Alves, C. L. et al. Diagnosis of autism spectrum disorder based on functional brain networks and machine learning. Sci. Rep. 13(1), 8072. https://doi.org/10.1038/s41598-023-34650-6 (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sun, J.-W. et al. Identify abnormal functional connectivity of resting state networks in Autism spectrum disorder and apply to machine learning-based classification. Brain Res. 1757, 147299. https://doi.org/10.1016/j.brainres.2021.147299 (2021).Article 
CAS 
PubMed 

Google Scholar 
Zang, Y. F. et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev. 29(2), 83–91. https://doi.org/10.1016/j.braindev.2006.07.002 (2007).Article 
PubMed 

Google Scholar 
Zou, Q. H. et al. An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. J. Neurosci. Methods 172(1), 137–41. https://doi.org/10.1016/j.jneumeth.2008.04.012 (2008).Article 
PubMed 
PubMed Central 

Google Scholar 
Akhavan Aghdam, M., Sharifi, A. & Pedram, M. M. Combination of rs-fMRI and sMRI data to discriminate autism spectrum disorders in young children using deep belief network. J. Digit. Imaging 31(6), 895–903. https://doi.org/10.1007/s10278-018-0093-8 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Tan, J. H., Zhan, Y., Tang, Y., Bao, W. & Tian, Y. EEG decoding for effects of visual joint attention training on ASD patients with interpretable and lightweight convolutional neural network. Cogn. Neurodyn. 18(3), 947–960 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Cheng, M. et al. Computer-aided autism spectrum disorder diagnosis with behavior signal processing. IEEE Trans. Affect. Comput. 14(4), 2982–3000. https://doi.org/10.1109/TAFFC.2023.3238712 (2023).Article 

Google Scholar 
Chen, T., & Guestrin, C. (eds) Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm Sigkdd International Conference on Knowledge Discovery and Data Mining (2016).Di Martino, A. et al. The autism brain imaging data exchange: Towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 19(6), 659–67. https://doi.org/10.1038/mp.2013.78 (2014).Article 
PubMed 

Google Scholar 
Cox, R. W. AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res. 29(3), 162–173. https://doi.org/10.1006/cbmr.1996.0014 (1996).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Smith, S. M. et al. Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23, S208–S219. https://doi.org/10.1016/j.neuroimage.2004.07.051 (2004).Article 
PubMed 

Google Scholar 
Hoopes, A., Mora, J. S., Dalca, A. V., Fischl, B. & Hoffmann, M. SynthStrip: Skull-stripping for any brain image. NeuroImage 260, 119474. https://doi.org/10.1016/j.neuroimage.2022.119474 (2022).Article 
PubMed 

Google Scholar 
Fischl, B. FreeSurfer. NeuroImage 62(2), 774–781. https://doi.org/10.1016/j.neuroimage.2012.01.021 (2012).Article 
PubMed 

Google Scholar 
Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K .Q. (eds) Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017).Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G. et al. Pytorch: An imperative style, high-performance deep learning library. In Advances in Neural information Processing Systems, Vol. 32 (2019).Cardoso, M.J., Li, W., Brown, R., Ma, N., Kerfoot, E., Wang, Y. et al. MONAI: An open-source framework for deep learning in healthcare2022 November 01, 2022:[arXiv:2211.02701]. https://ui.adsabs.harvard.edu/abs/2022arXiv221102701C.Biewald, L. Experiment tracking with weights and biases 2020. https://www.wandb.com/.Abraham, A. et al. Deriving reproducible biomarkers from multi-site resting-state data: An autism-based example. Neuroimage 147, 736–45. https://doi.org/10.1016/j.neuroimage.2016.10.045 (2017).Article 
PubMed 

Google Scholar 
Dvornek, N. C., Ventola, P., Pelphrey, K. A. & Duncan, J. S. Identifying autism from resting-state fMRI using long short-term memory networks. Mach. Learn. Med. Imaging 10541, 362–70. https://doi.org/10.1007/978-3-319-67389-9_42 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Brown, C. J., Kawahara, J. & Hamarneh, G. (eds) Connectome priors in deep neural networks to predict autism. In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018); 2018 4–7 April (2018).Heinsfeld, A. S., Franco, A. R., Craddock, R. C., Buchweitz, A. & Meneguzzi, F. Identification of autism spectrum disorder using deep learning and the ABIDE dataset. NeuroImage Clin. 17, 16–23. https://doi.org/10.1016/j.nicl.2017.08.017 (2018).Article 
PubMed 

Google Scholar 
Eslami, T., Mirjalili, V., Fong, A., Laird, A. R. & Saeed, F. ASD-DiagNet: A hybrid learning approach for detection of autism spectrum disorder using fMRI data. Front. Neuroinform. 13, 70. https://doi.org/10.3389/fninf.2019.00070 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Thomas, R. M. et al. Classifying autism spectrum disorder using the temporal statistics of resting-state functional MRI data with 3D Convolutional Neural Networks. Front. Psychiatry 11, 440. https://doi.org/10.3389/fpsyt.2020.00440 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Chaitra, N., Vijaya, P. A. & Gopikrishna, D. Diagnostic prediction of autism spectrum disorder using complex network measures in a machine learning framework. Biomed. Signal Process. Control 62, 102099. https://doi.org/10.1016/j.bspc.2020.102099 (2020).Article 

Google Scholar 
Ji, J., Xing, X., Yao, Y., Li, J. & Zhang, X. Convolutional kernels with an element-wise weighting mechanism for identifying abnormal brain connectivity patterns. Pattern Recognit. 109, 107570. https://doi.org/10.1016/j.patcog.2020.107570 (2021).Article 

Google Scholar 
Sun, L. et al. Estimating sparse functional connectivity networks via hyperparameter-free learning model. Artif. Intell. Med. 111, 102004. https://doi.org/10.1016/j.artmed.2020.102004 (2021).Article 
PubMed 

Google Scholar 
Gao, K. et al. Deep transfer learning for cerebral cortex using area-preserving geometry mapping. Cereb. Cortex 32(14), 2972–2984. https://doi.org/10.1093/cercor/bhab394 (2022).Article 
PubMed 

Google Scholar 
Zhang, J., Feng, F., Han, T., Gong, X. & Duan, F. Detection of autism spectrum disorder using fMRI functional connectivity with feature selection and deep learning. Cogn. Comput. 15(4), 1106–1117. https://doi.org/10.1007/s12559-021-09981-z (2023).Article 

Google Scholar 
Zhao, F., Chen, Z., Rekik, I., Lee, S.-W. & Shen, D. Diagnosis of autism spectrum disorder using central-moment features from low- and high-order dynamic resting-state functional connectivity networks. Front. Neurosci. https://doi.org/10.3389/fnins.2020.00258 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Deng, S. et al. Hemodynamic and metabolic correspondence of resting-state voxel-based physiological metrics in healthy adults. Neuroimage 250, 118923. https://doi.org/10.1016/j.neuroimage.2022.118923 (2022).Article 
CAS 
PubMed 

Google Scholar 
Subramanian, K. et al. Basal ganglia and autism: A translational perspective. Autism Res. 10(11), 1751–75. https://doi.org/10.1002/aur.1837 (2017).Article 
PubMed 

Google Scholar 
Fuccillo, M. V. Striatal circuits as a common node for autism pathophysiology. Front. Neurosci. https://doi.org/10.3389/fnins.2016.00027 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Prat, C. S., Stocco, A., Neuhaus, E. & Kleinhans, N. M. Basal ganglia impairments in autism spectrum disorder are related to abnormal signal gating to prefrontal cortex. Neuropsychologia 91, 268–281. https://doi.org/10.1016/j.neuropsychologia.2016.08.007 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Karavallil Achuthan, S. et al. Thalamic functional connectivity and sensorimotor processing in neurodevelopmental disorders. Front. Neurosci. 17, 1279909. https://doi.org/10.3389/fnins.2023.1279909 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Linke, A. C. et al. Sleep problems in preschoolers with autism spectrum disorder are associated with sensory sensitivities and thalamocortical overconnectivity. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 8(1), 21–31. https://doi.org/10.1016/j.bpsc.2021.07.008 (2023).Article 
PubMed 

Google Scholar 
Eslami, T., Almuqhim, F., Raiker, J. S. & Saeed, F. Machine learning methods for diagnosing autism spectrum disorder and attention-deficit/hyperactivity disorder using functional and structural MRI: A survey. Front. Neuroinform. https://doi.org/10.3389/fninf.2020.575999 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Bahathiq, R., Banjar, H., Kammoun Jarraya, S., Bamaga, A. & Almoallim, R. Efficient diagnosis of autism spectrum disorder using optimized machine learning models based on structural MRI. Appl. Sci. 14, 473. https://doi.org/10.3390/app14020473 (2024).Article 
CAS 

Google Scholar 
Haghighat, H., Mirzarezaee, M., Nadjar Araabi, B. & Khadem, A. An age-dependent connectivity-based computer aided diagnosis system for autism spectrum disorder using resting-state fMRI. Biomed. Signal Process. Control 71, 103108. https://doi.org/10.1016/j.bspc.2021.103108 (2022).Article 

Google Scholar 
Leonardsen, E. H. et al. Deep neural networks learn general and clinically relevant representations of the ageing brain. Neuroimage 256, 119210. https://doi.org/10.1016/j.neuroimage.2022.119210 (2022).Article 
PubMed 

Google Scholar 
Khachadourian, V. et al. Comorbidities in autism spectrum disorder and their etiologies. Transl. Psychiatry 13(1), 71. https://doi.org/10.1038/s41398-023-02374-w (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Haghighat, H., Mirzarezaee, M., Araabi, B. N. & Khadem, A. A sex-dependent computer-aided diagnosis system for autism spectrum disorder using connectivity of resting-state fMRI. J. Neural Eng. 19(5), 056034. https://doi.org/10.1088/1741-2552/ac86a4 (2022).Article 
ADS 

Google Scholar 
van der Velden, B. H. M., Kuijf, H. J., Gilhuijs, K. G. A. & Viergever, M. A. Explainable artificial intelligence (XAI) in deep learning-based medical image analysis. Med. Image Anal. 79, 102470. https://doi.org/10.1016/j.media.2022.102470 (2022).Article 
PubMed 

Google Scholar 

Hot Topics

Related Articles