Lithium-ion battery recycling—a review of the material supply and policy infrastructure

Sun, Y.-K. A rising tide of Co-free chemistries for li-ion batteries. ACS Energy Lett. 7, 1774–1775 (2022).Article 
CAS 

Google Scholar 
Mohammadi, F. & Saif, M. A comprehensive overview of electric vehicle batteries market. e-Prime-Adv. Electr. Eng. Electr. Energy. 3, 100127 (2023).Li, M., Lu, J., Chen, Z. & Amine, K. 30 years of lithium‐ion batteries. Adv. Mater. 30, 1800561 (2018).Article 

Google Scholar 
Blomgren, G. E. The development and future of lithium ion batteries. J. Electrochem. Soc. 164, A5019 (2016).Article 

Google Scholar 
Agrawal, R. & Pandey, G. Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview. J. Phys. D. Appl. Phys. 41, 223001 (2008).Article 

Google Scholar 
Xue, C., Zhou, H., Wu, Q., Wu, X. & Xu, X. Impact of incentive policies and other socio-economic factors on electric vehicle market share: A panel data analysis from the 20 countries. Sustainability 13, 2928 (2021).Article 

Google Scholar 
Yadlapalli, R. T., Kotapati, A., Kandipati, R. & Koritala, C. S. A review on energy efficient technologies for electric vehicle applications. J. Energy Storage 50, 104212 (2022).Article 

Google Scholar 
Richa, K., Babbitt, C. W., Gaustad, G. & Wang, X. A future perspective on lithium-ion battery waste flows from electric vehicles. Resour. Conserv. Recy. 83, 63–76 (2014).Article 

Google Scholar 
Islam, M. T. & Iyer-Raniga, U. Lithium-ion battery recycling in the circular economy: a review. Recycling 7, 33 (2022).Article 

Google Scholar 
Manthiram, A. An outlook on lithium ion battery technology. ACS Cent. Sci. 3, 1063–1069 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Purwanto, A. et al. NCA cathode material: synthesis methods and performance enhancement efforts. Mater. Res. Express 5, 122001 (2018).Article 

Google Scholar 
Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 11, 1550 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Helbig, C., Bradshaw, A. M., Wietschel, L., Thorenz, A. & Tuma, A. Supply risks associated with lithium-ion battery materials. J. Clean. Prod. 172, 274–286 (2018).Article 
CAS 

Google Scholar 
Ryu, H.-H., Sun, H. H., Myung, S.-T., Yoon, C. S. & Sun, Y.-K. Reducing cobalt from lithium-ion batteries for the electric vehicle era. Energ. Environ. Sci. 14, 844–852 (2021).Article 
CAS 

Google Scholar 
U.S. Geological Survey. Mineral commodity summaries 2023. U.S. Geological Survey, 210 (2023).Mohsin, M., Picot, A. & Maussion, P. A new lead-acid battery state-of-health evaluation method using electrochemical impedance spectroscopy for second life in rural electrification systems. J. Energy Storage 52, 104647 (2022).Article 

Google Scholar 
Pang, Z. et al. A new method for determining SOH of lithium batteries using the real-part ratio of EIS specific frequency impedance. J. Energy Storage 72, 108693 (2023).Article 

Google Scholar 
Hannan, M. A., Lipu, M. H., Hussain, A. & Mohamed, A. A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: challenges and recommendations. Renew. Sust. Energ. Rev. 78, 834–854 (2017).Article 

Google Scholar 
Hlal, M. I., Ramachandaramurthy, V. K., Sarhan, A., Pouryekta, A. & Subramaniam, U. Optimum battery depth of discharge for off-grid solar PV/battery system. J. Energy Storage 26, 100999 (2019).Article 

Google Scholar 
Xiong, R., Tian, J., Mu, H. & Wang, C. A systematic model-based degradation behavior recognition and health monitoring method for lithium-ion batteries. Appl. Energy 207, 372–383 (2017).Article 

Google Scholar 
Li, R., Hong, J., Zhang, H. & Chen, X. Data-driven battery state of health estimation based on interval capacity for real-world electric vehicles. Energy 257, 124771 (2022).Article 

Google Scholar 
Zou, Y., Hu, X., Ma, H. & Li, S. E. Combined state of charge and state of health estimation over lithium-ion battery cell cycle lifespan for electric vehicles. J. Power Sources 273, 793–803 (2015).Article 
CAS 

Google Scholar 
Xiong, R., Li, L. & Tian, J. Towards a smarter battery management system: a critical review on battery state of health monitoring methods. J. Power Sources 405, 18–29 (2018).Article 
CAS 

Google Scholar 
Ezpeleta, I. et al. Characterisation of commercial Li‐ion batteries using electrochemical impedance spectroscopy. ChemistrySelect 7, e202104464 (2022).Article 
CAS 

Google Scholar 
Galeotti, M., Cinà, L., Giammanco, C., Cordiner, S. & Di Carlo, A. Performance analysis and SOH (state of health) evaluation of lithium polymer batteries through electrochemical impedance spectroscopy. Energy 89, 678–686 (2015).Article 
CAS 

Google Scholar 
Xiong, R., Li, L., Li, Z., Yu, Q. & Mu, H. An electrochemical model based degradation state identification method of Lithium-ion battery for all-climate electric vehicles application. Appl. Energy 219, 264–275 (2018).Article 
CAS 

Google Scholar 
Chen, L., Lü, Z., Lin, W., Li, J. & Pan, H. A new state-of-health estimation method for lithium-ion batteries through the intrinsic relationship between ohmic internal resistance and capacity. Measurement 116, 586–595 (2018).Article 

Google Scholar 
Cai, L. et al. Multiobjective optimization of data-driven model for lithium-ion battery SOH estimation with short-term feature. IEEE Trans. Power Electron 35, 11855–11864 (2020).Article 

Google Scholar 
Jiang, S. & Song, Z. Estimating the state of health of lithium-ion batteries with a high discharge rate through impedance. Energies 14, 4833 (2021).Article 
CAS 

Google Scholar 
Bhar, M., Ghosh, S., Krishnamurthy, S., Kaliprasad, Y. & Martha, S. K. A review on spent lithium-ion battery recycling: from collection to black mass recovery. RSC Sustain. 1, 1150–1167 (2023).Werner, D., Peuker, U. A. & Mütze, T. Recycling chain for spent lithium-ion batteries. Metals 10, 316 (2020).Article 
CAS 

Google Scholar 
Alipanah, M., Saha, A. K., Vahidi, E. & Jin, H. Value recovery from spent lithium-ion batteries: a review on technologies, environmental impacts, economics, and supply chain. Clean. Technol. Recy. 1, 152–184 (2021).Article 

Google Scholar 
Richa, K., Babbitt, C. W. & Gaustad, G. Eco‐efficiency analysis of a lithium‐ion battery waste hierarchy inspired by circular economy. J. Ind. Ecol. 21, 715–730 (2017).Article 

Google Scholar 
Saxena, S., Le Floch, C., MacDonald, J. & Moura, S. Quantifying EV battery end-of-life through analysis of travel needs with vehicle powertrain models. J. Power Sources 282, 265–276 (2015).Article 
CAS 

Google Scholar 
Haram, M. H. S. M. et al. Feasibility of utilising second life EV batteries: applications, lifespan, economics, environmental impact, assessment, and challenges. Alex. Eng. J. 60, 4517–4536 (2021).Article 

Google Scholar 
Neubauer, J., Smith, K., Wood, E. & Pesaran, A. Identifying and overcoming critical barriers to widespread second use of PEV batteries. National Renewable Energy Laboratory (NREL), Golden, CO (United States), (2015).Zhao, Y. et al. A review on battery market trends, second-life reuse, and recycling. Sustain. Chem. 2, 167–205 (2021).Article 
CAS 

Google Scholar 
Ahmadi, L., Young, S. B., Fowler, M., Fraser, R. A. & Achachlouei, M. A. A cascaded life cycle: reuse of electric vehicle lithium-ion battery packs in energy storage systems. Int. J. Life Cycle Assess. 22, 111–124 (2017).Article 
CAS 

Google Scholar 
DeRousseau, M., Gully, B., Taylor, C., Apelian, D. & Wang, Y. Repurposing used electric car batteries: a review of options. JOM 69, 1575–1582 (2017).Article 

Google Scholar 
Martinez-Laserna, E. et al. Technical viability of battery second life: a study from the ageing perspective. IEEE Trans. Ind. Appl. 54, 2703–2713 (2018).Article 
CAS 

Google Scholar 
Hua, Y. et al. Toward sustainable reuse of retired lithium-ion batteries from electric vehicles. Resour. Conserv. Recy. 168, 105249 (2021).Article 

Google Scholar 
Sloop, S. E. et al. Cathode healing methods for recycling of lithium-ion batteries. Sustain. Mater. Technol. 22, e00113 (2019).CAS 

Google Scholar 
Li, X., Zhang, J., Song, D., Song, J. & Zhang, L. Direct regeneration of recycled cathode material mixture from scrapped LiFePO4 batteries. J. Power Sources 345, 78–84 (2017).Article 
CAS 

Google Scholar 
Hanisch, C. et al. Recycling of lithium-ion batteries: a novel method to separate coating and foil of electrodes. J. Clean. Prod. 108, 301–311 (2015).Article 
CAS 

Google Scholar 
Lombardo, G., Ebin, B., Foreman, M. R. S. J., Steenari, B.-M. & Petranikova, M. Incineration of EV lithium-ion batteries as a pretreatment for recycling–determination of the potential formation of hazardous by-products and effects on metal compounds. J. Hazard. Mater. 393, 122372 (2020).Article 
CAS 
PubMed 

Google Scholar 
Zhang, G. et al. A sustainable process for the recovery of anode and cathode materials derived from spent lithium-ion batteries. Sustainability 11, 2363 (2019).Article 

Google Scholar 
Zachmann, N., Petranikova, M. & Ebin, B. Electrolyte recovery from spent lithium-ion batteries using a low temperature thermal treatment process. J. Ind. Eng. Chem. 118, 351–361 (2023).Article 
CAS 

Google Scholar 
Hu, X. et al. Complex gas formation during combined mechanical and thermal treatments of spent lithium-ion-battery cells. J. Hazard. Mater. 431, 128541 (2022).Article 
CAS 
PubMed 

Google Scholar 
Yang, Y., Huang, G., Xu, S., He, Y. & Liu, X. Thermal treatment process for the recovery of valuable metals from spent lithium-ion batteries. Hydrometallurgy 165, 390–396 (2016).Article 
CAS 

Google Scholar 
Lombardo, G., Ebin, B., St. J. Foreman, M. R., Steenari, B.-M. & Petranikova, M. Chemical transformations in Li-ion battery electrode materials by carbothermic reduction. ACS Sustain. Chem. Eng. 7, 13668–13679 (2019).Article 
CAS 

Google Scholar 
Haldar, S. K. Mineral exploration: principles and applications. (Elsevier, 2018).Yue, Y. et al. Recovering valuable metals from spent lithium ion battery via a combination of reduction thermal treatment and facile acid leaching. ACS Sustain. Chem. Eng. 6, 10445–10453 (2018).Article 
CAS 

Google Scholar 
Fu, Y. et al. Microwave reduction enhanced leaching of valuable metals from spent lithium-ion batteries. J. Alloy. Compd. 832, 154920 (2020).Article 
CAS 

Google Scholar 
Zhao, Y., Liu, B., Zhang, L. & Guo, S. Microwave-absorbing properties of cathode material during reduction roasting for spent lithium-ion battery recycling. J. Hazard. Mater. 384, 121487 (2020).Article 
CAS 
PubMed 

Google Scholar 
Fu, Y. et al. Improved hydrometallurgical extraction of valuable metals from spent lithium-ion batteries via a closed-loop process. J. Alloy. Compd. 847, 156489 (2020).Article 
CAS 

Google Scholar 
Peng, C., Liu, F., Wang, Z., Wilson, B. P. & Lundström, M. Selective extraction of lithium (Li) and preparation of battery grade lithium carbonate (Li2CO3) from spent Li-ion batteries in nitrate system. J. Power Sources 415, 179–188 (2019).Article 
CAS 

Google Scholar 
Lin, J. et al. Conversion mechanisms of selective extraction of lithium from spent lithium-ion batteries by sulfation roasting. ACS Appl. Mater. Interfaces 12, 18482–18489 (2020).Article 
CAS 
PubMed 

Google Scholar 
Barrios, O. C., González, Y. C., Barbosa, L. I. & Orosco, P. Chlorination roasting of the cathode material contained in spent lithium-ion batteries to recover lithium, manganese, nickel and cobalt. Miner. Eng. 176, 107321 (2022).Article 
CAS 

Google Scholar 
Windisch-Kern, S., Holzer, A., Ponak, C. & Raupenstrauch, H. Pyrometallurgical lithium-ion-battery recycling: approach to limiting lithium slagging with the InduRed reactor concept. Processes 9, 84 (2021).Article 
CAS 

Google Scholar 
Gallo, A., Marzo, A., Fuentealba, E. & Alonso, E. High flux solar simulators for concentrated solar thermal research: a review. Renew. Sust. Energ. Rev. 77, 1385–1402 (2017).Article 

Google Scholar 
Halmann, M., Steinfeld, A., Epstein, M. & Vishnevetsky, I. in Encyclopedia of Aluminum and Its Alloys, Two-Volume Set (Print) 2771–2777 (CRC Press, 2018).Nuraeni, B. A., Nababan, D. C., Putera, A. & Rhamdhani, M. A. In: TMS Annual Meeting & Exhibition. 187–199 (Springer).Shaw-Stewart, J. et al. Aqueous solution discharge of cylindrical lithium-ion cells. Sustain. Mater. Technol. 22, e00110 (2019).CAS 

Google Scholar 
Ojanen, S., Lundström, M., Santasalo-Aarnio, A. & Serna-Guerrero, R. Challenging the concept of electrochemical discharge using salt solutions for lithium-ion batteries recycling. Waste Manag. 76, 242–249 (2018).Article 
CAS 
PubMed 

Google Scholar 
Wu, L., Zhang, F.-S., He, K., Zhang, Z.-Y. & Zhang, C.-C. Avoiding thermal runaway during spent lithium-ion battery recycling: a comprehensive assessment and a new approach for battery discharge. J. Clean. Prod. 380, 135045 (2022).Article 
CAS 

Google Scholar 
Kaas, A., Wilke, C., Vanderbruggen, A. & Peuker, U. A. Influence of different discharge levels on the mechanical recycling efficiency of lithium-ion batteries. Waste Manag. 172, 1–10 (2023).Article 
CAS 
PubMed 

Google Scholar 
Natarajan, S. & Aravindan, V. Recycling strategies for spent Li-ion battery mixed cathodes. ACS Energy Lett. 3, 2101–2103 (2018).Article 
CAS 

Google Scholar 
Lei, S. et al. Strengthening valuable metal recovery from spent lithium-ion batteries by environmentally friendly reductive thermal treatment and electrochemical leaching. ACS Sustain. Chem. Eng. 9, 7053–7062 (2021).Article 
CAS 

Google Scholar 
Li, L. et al. Recovery of metals from spent lithium-ion batteries with organic acids as leaching reagents and environmental assessment. J. Power Sources 233, 180–189 (2013).Article 
CAS 

Google Scholar 
Meshram, P., Pandey, B. D. & Mankhand, T. R. Recovery of valuable metals from cathodic active material of spent lithium ion batteries: Leaching and kinetic aspects. Waste Manag. 45, 306–313 (2015).Article 
CAS 
PubMed 

Google Scholar 
Zheng, X. et al. Spent lithium-ion battery recycling—Reductive ammonia leaching of metals from cathode scrap by sodium sulphite. Waste Manag. 60, 680–688 (2017).Article 
CAS 
PubMed 

Google Scholar 
Paulino, J. F., Busnardo, N. G. & Afonso, J. C. Recovery of valuable elements from spent Li-batteries. J. Hazard. Mater. 150, 843–849 (2008).Article 
CAS 
PubMed 

Google Scholar 
Li, L. et al. Recovery of valuable metals from spent lithium-ion batteries by ultrasonic-assisted leaching process. J. Power Sources 262, 380–385 (2014).Article 
CAS 

Google Scholar 
Jegan Roy, J., Srinivasan, M. & Cao, B. Bioleaching as an eco-friendly approach for metal recovery from spent NMC-based lithium-ion batteries at a high pulp density. ACS Sustain. ACS Sustain. Chem. Eng. 9, 3060–3069 (2021).Article 
CAS 

Google Scholar 
Bahaloo-Horeh, N. & Mousavi, S. M. Enhanced recovery of valuable metals from spent lithium-ion batteries through optimization of organic acids produced by Aspergillus niger. Waste Manag. 60, 666–679 (2017).Article 
CAS 
PubMed 

Google Scholar 
Biswal, B. K. et al. Biological leaching and chemical precipitation methods for recovery of Co and Li from spent lithium-ion batteries. ACS Sustain. Chem. Eng. 6, 12343–12352 (2018).Article 
CAS 

Google Scholar 
Gao, W. et al. Lithium carbonate recovery from cathode scrap of spent lithium-ion battery: a closed-loop process. Environ. Sci. Technol. 51, 1662–1669 (2017).Article 
CAS 
PubMed 

Google Scholar 
Meshram, P., Pandey, B. & Mankhand, T. Hydrometallurgical processing of spent lithium ion batteries (LIBs) in the presence of a reducing agent with emphasis on kinetics of leaching. Chem. Eng. J. 281, 418–427 (2015).Article 
CAS 

Google Scholar 
Sa, Q. et al. Synthesis of high performance LiNi1/3Mn1/3Co1/3O2 from lithium ion battery recovery stream. J. Power Sources 282, 140–145 (2015).Article 
CAS 

Google Scholar 
Dhiman, S. & Gupta, B. Partition studies on cobalt and recycling of valuable metals from waste Li-ion batteries via solvent extraction and chemical precipitation. J. Clean. Prod. 225, 820–832 (2019).Article 
CAS 

Google Scholar 
Xu, X. et al. Role of Li‐ion depletion on electrode surface: underlying mechanism for electrodeposition behavior of lithium metal anode. Adv. Energy Mater. 10, 2002390 (2020).Article 
CAS 

Google Scholar 
Lu, J., Dreisinger, D. & Glück, T. Manganese electrodeposition—a literature review. Hydrometallurgy 141, 105–116 (2014).Article 
CAS 

Google Scholar 
Kim, K., Raymond, D., Candeago, R. & Su, X. Selective cobalt and nickel electrodeposition for lithium-ion battery recycling through integrated electrolyte and interface control. Nat. Commun. 12, 6554 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Freitas, M. & Garcia, E. Electrochemical recycling of cobalt from cathodes of spent lithium-ion batteries. J. Power Sources 171, 953–959 (2007).Article 
CAS 

Google Scholar 
Zhang, B. et al. A paired electrolysis approach for recycling spent lithium iron phosphate batteries in an undivided molten salt cell. Green. Chem. 22, 8633–8641 (2020).Article 
CAS 

Google Scholar 
Zhang, B. et al. A green electrochemical process to recover Co and Li from spent LiCoO2-based batteries in molten salts. ACS Sustain. Chem. Eng. 7, 13391–13399 (2019).Article 
CAS 

Google Scholar 
Li, H. et al. Electrochemical mechanism of recovery of nickel metal from waste lithium ion batteries by molten salt electrolysis. Materials 14, 6875 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liang, J. et al. The electrochemical mechanism of preparing Mn from LiMn2O4 in waste batteries in molten salt. Crystals 11, 1066 (2021).Article 
CAS 

Google Scholar 
Zhao, J. et al. Extraction of Co and Li2CO3 from cathode materials of spent lithium-ion batteries through a combined acid-leaching and electro-deoxidation approach. J. Hazard. Mater. 379, 120817 (2019).Article 
CAS 
PubMed 

Google Scholar 
Wang, M., Tan, Q., Liu, L. & Li, J. Efficient separation of aluminum foil and cathode materials from spent lithium-ion batteries using a low-temperature molten salt. ACS Sustain. Chem. Eng. 7, 8287–8294 (2019).Article 
CAS 

Google Scholar 
Mirza, M. et al. Recovery of cobalt from lithium-ion batteries using fluidised cathode molten salt electrolysis. Electrochim. Acta 391, 138846 (2021).Article 
CAS 

Google Scholar 
Sadhukhan, J. & Christensen, M. An in-depth life cycle assessment (LCA) of lithium-ion battery for climate impact mitigation strategies. Energies 14, 5555 (2021).Article 
CAS 

Google Scholar 
Rebitzer, G. et al. Life cycle assessment: Part 1: framework, goal and scope definition, inventory analysis, and applications. Environ. Int. 30, 701–720 (2004).Article 
CAS 
PubMed 

Google Scholar 
Chen, Q. et al. Investigating carbon footprint and carbon reduction potential using a cradle-to-cradle LCA approach on lithium-ion batteries for electric vehicles in China. J. Clean. Prod. 369, 133342 (2022).Article 
CAS 

Google Scholar 
Jiang, S. et al. Environmental impacts of hydrometallurgical recycling and reusing for manufacturing of lithium-ion traction batteries in China. Sci. Total Environ. 811, 152224 (2022).Article 
CAS 
PubMed 

Google Scholar 
Yoo, E., Lee, U., Kelly, J. C. & Wang, M. Life-cycle analysis of battery metal recycling with lithium recovery from a spent lithium-ion battery. Resour. Conserv. Recy. 196, 107040 (2023).Article 
CAS 

Google Scholar 
Nordelöf, A. et al. Methodological approaches to end-of-life modelling in life cycle assessments of lithium-ion batteries. Batteries 5, 51 (2019).Article 

Google Scholar 
Arshad, F. et al. Life cycle assessment of lithium-ion batteries: a critical review. Resour. Conserv. Recy. 180, 106164 (2022).Article 
CAS 

Google Scholar 
Mohr, M., Peters, J. F., Baumann, M. & Weil, M. Toward a cell‐chemistry specific life cycle assessment of lithium‐ion battery recycling processes. J. Ind. Ecol. 24, 1310–1322 (2020).Article 
CAS 

Google Scholar 
Kallitsis, E., Korre, A. & Kelsall, G. H. Life cycle assessment of recycling options for automotive Li-ion battery packs. J. Clean. Prod. 371, 133636 (2022).Article 
CAS 

Google Scholar 
Liu, C., Lin, J., Cao, H., Zhang, Y. & Sun, Z. Recycling of spent lithium-ion batteries in view of lithium recovery: a critical review. J. Clean. Prod. 228, 801–813 (2019).Article 
CAS 

Google Scholar 
Dai, Q. et al. EverBatt: A closed-loop battery recycling cost and environmental impacts model. Argonne National Laboratory (ANL), Argonne, IL (United States) (2019).Wang, M. et al. Greenhouse gases, regulated emissions, and energy use in technologies model (2021 Excel). Argonne National Laboratory (ANL), Argonne, IL (United States) (2021).Warner, J. T. The handbook of lithium-ion battery pack design: chemistry, components, types and terminology. (Elsevier, 2015).Marshall, J. et al. Disassembly of Li ion cells—characterization and safety considerations of a recycling scheme. Metals 10, 773 (2020).Article 
CAS 

Google Scholar 
Liz, T. Argonne is helping U.S. companies advance battery recycling technology and strengthen the nation’s battery supply chain, Argonne National Laboratory (ANL), Argonne, IL (United States, 2023).Paul, L. & David, S. U.S. set to loan Redwood Materials $2 bln for EV materials plant, Reuters (2023).Jigar, S. LPO announces a conditional commitment for loan to Li-Cycle’s U.S. Battery resource recovery facility to recover critical electric vehicle battery materials. Energy.Gov (2023).Pazoki, M. & Zaccour, G. Extended producer responsibility: regulation design and responsibility sharing policies for a supply chain. J. Clean. Prod. 236, 117516 (2019).Article 

Google Scholar 
Nilsson, M. et al. Understanding policy coherence: analytical framework and examples of sector–environment policy interactions in the EU. Environ. Policy Gov. 22, 395–423 (2012).Article 

Google Scholar 
Dobrowolski, Z., Sułkowski, Ł. & Danielak, W. Management of waste batteries and accumulators: quest of European Union goals. Energies 14, 6273 (2021).Article 
CAS 

Google Scholar 
Malinauskaite, J., Anguilano, L. & Rivera, X. S. Circular waste management of electric vehicle batteries: legal and technical perspectives from the EU and the UK post Brexit. Int. J. Thermofluids 10, 100078 (2021).Article 
CAS 

Google Scholar 
Kim, H., Jang, Y.-C., Hwang, Y., Ko, Y. & Yun, H. End-of-life batteries management and material flow analysis in South Korea. Front. Environ. Sci. Eng. 12, 1–13 (2018).Article 

Google Scholar 
Morita, Y., Saito, Y., Yoshioka, T. & Shiratori, T. Estimation of recoverable resources used in lithium-ion batteries from portable electronic devices in Japan. Resour. Conserv. Recy. 175, 105884 (2021).Article 
CAS 

Google Scholar 
Ye, L. & Li, X. A dynamic stability design strategy for lithium metal solid state batteries. Nature 593, 218–222 (2021).Article 
CAS 
PubMed 

Google Scholar 
Chen, R., Li, Q., Yu, X., Chen, L. & Li, H. Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chem. Rev. 120, 6820–6877 (2019).Article 
PubMed 

Google Scholar 
Jacob, M., Wissel, K. & Clemens, O. Recycling of solid-state batteries—challenge and opportunity for a circular economy? Mater. Futures 3, 012101 (2024).Article 
CAS 

Google Scholar 
Sun, Y.-K. Promising all-solid-state batteries for future electric vehicles. ACS Energy Lett. 5, 3221–3223 (ACS Publications, 2020).Hwang, J.-Y., Myung, S.-T. & Sun, Y.-K. Sodium-ion batteries: present and future. Chem. Soc. Rev. 46, 3529–3614 (2017).Article 
CAS 
PubMed 

Google Scholar 
Zhao, Y. et al. Recycling of sodium-ion batteries. Nat. Rev. Mater. 8, 623–634 (2023).Article 
CAS 

Google Scholar 
Kim, K. et al. Improving the cyclability of silicon anodes for lithium-ion batteries using a simple pre-lithiation method. J. Power Sources 459, 228066 (2020).Article 
CAS 

Google Scholar 
Chen, H. et al. A mechanically robust self-healing binder for silicon anode in lithium ion batteries. Nano Energy 81, 105654 (2021).Article 
CAS 

Google Scholar 
Son, Y. et al. Exploring critical factors affecting strain distribution in 1D silicon‐based nanostructures for lithium‐ion battery anodes. Adv. Mater. 30, 1705430 (2018).Article 

Google Scholar 
Li, X. et al. Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nat. Commun. 5, 4105 (2014).Article 
CAS 
PubMed 

Google Scholar 
Zhang, L. et al. A yolk–shell structured silicon anode with superior conductivity and high tap density for full lithium‐ion batteries. Angew. Chem. Int. Ed. 58, 8824–8828 (2019).Article 
CAS 

Google Scholar 
U. S. Department of Energy. Vol. DE-FOA-0002897 Bipartisan Infrastructure Law (BIL) Consumer Electronics Battery Recycling, Reprocessing, and Battery Collection (ed. Department of Energy) 9–18 (2023).Hossain, E. et al. A Comprehensive review on second-life batteries: current state, manufacturing considerations, applications, impacts, barriers & potential solutions, business strategies, and policies. IEEE Access 7, 73215–73252 (2019).Article 

Google Scholar 
Chen, L. et al. Process for the recovery of cobalt oxalate from spent lithium-ion batteries. Hydrometallurgy 108, 80–86 (2011).Article 
CAS 

Google Scholar 
Suzuki, T., Nakamura, T., Inoue, Y., Niinae, M. & Shibata, J. A hydrometallurgical process for the separation of aluminum, cobalt, copper and lithium in acidic sulfate media. Sep. Purif. Technol. 98, 396–401 (2012).Article 
CAS 

Google Scholar 
Jingu, K., Senanayake, G. & Sohn, J. Recovery of cobalt sulfate from spent lithium ion batteries by reductive leaching and solvent extraction with Cyanex 272. Hydrometallurgy 100, 168–171 (2010).Article 

Google Scholar 
Nan, J., Han, D., Yang, M., Cui, M. & Hou, X. Recovery of metal values from a mixture of spent lithium-ion batteries and nickel-metal hydride batteries. Hydrometallurgy 84, 75–80 (2006).Article 
CAS 

Google Scholar 
Zhang, L. et al. Lithium recovery from effluent of spent lithium battery recycling process using solvent extraction. J. Hazard. Mater. 398, 122840 (2020).Article 
CAS 
PubMed 

Google Scholar 
Rallo, H., Benveniste, G., Gestoso, I. & Amante, B. Economic analysis of the disassembling activities to the reuse of electric vehicles Li-ion batteries. Resour. Conserv. Recy. 159, 104785 (2020).Article 

Google Scholar 
Bruno, M. & Fiore, S. Low-cost and environmentally friendly physic-mechanical pre-treatments to recycle lithium iron phosphate cathodes. J. Environ. Chem. Eng. 12, 12106 (2024).Park, K. et al. Direct cathode recycling of end-of-life Li-ion batteries enabled by redox mediation. ACS Sustain. Chem. Eng. 9, 8214–8221 (2021).Article 
CAS 

Google Scholar 
Reinhart, L. et al. Pyrometallurgical recycling of different lithium-ion battery cell systems: economic and technical analysis. J. Clean. Prod. 416, 137834 (2023).Thompson, D. et al. To shred or not to shred: a comparative techno-economic assessment of lithium ion battery hydrometallurgical recycling retaining value and improving circularity in LIB supply chains. Resour. Conserv. Recy. 175, 105741 (2021).Article 
CAS 

Google Scholar 
Vanderbruggen, A. et al. Automated mineralogy as a novel approach for the compositional and textural characterization of spent lithium-ion batteries. Miner. Eng. 169, 106924 (2021).Article 
CAS 

Google Scholar 
Diekmann, J. et al. Ecological recycling of lithium-ion batteries from electric vehicles with focus on mechanical processes. J. Electrochem. Soc. 164, A6184 (2016).Article 

Google Scholar 
Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188 (1997).Article 
CAS 

Google Scholar 
Miao, Y., Hynan, P., Von Jouanne, A. & Yokochi, A. Current Li-ion battery technologies in electric vehicles and opportunities for advancements. Energies 12, 1074 (2019).Article 
CAS 

Google Scholar 
Hannan, M. A., Hoque, M. M., Hussain, A., Yusof, Y. & Ker, P. J. State-of-the-art and energy management system of lithium-ion batteries in electric vehicle applications: issues and recommendations. IEEE Access 6, 19362–19378 (2018).Article 

Google Scholar 
U.S. Geological Survey. Mineral commodity summaries 2015. In: U.S. Geological Survey 196 (2015).U.S. Geological Survey. Mineral commodity summaries 2016. In: U.S. Geological Survey 202 (2016).U.S. Geological Survey. Mineral commodity summaries 2017. In: U.S. Geological Survey 202 (2017).U.S. Geological Survey. Mineral commodity summaries 2018. In: U.S. Geological Survey 200 (2018).U.S. Geological Survey. Mineral commodity summaries 2019. In: U.S. Geological Survey 200 (2019).U.S. Geological Survey. Mineral commodity summaries 2020. In: U.S. Geological Survey 200 (2020).U.S. Geological Survey. Mineral commodity summaries 2021. In: U.S. Geological Survey 200 (2021).U.S. Geological Survey. Mineral commodity summaries 2022. In: U.S. Geological Survey 202 (2022).

Hot Topics

Related Articles