Optimising CNT-FET biosensor design through modelling of biomolecular electrostatic gating and its application to β-lactamase detection

Horowitz, G. Organic field-effect transistors. Adv. Mater. 10, 365–377 (1998).Article 
CAS 

Google Scholar 
Lee, C. S., Gwyther, R. E. A., Freeley, M., Jones, D. & Palma, M. Fabrication and functionalisation of nanocarbon-based field-effect transistor biosensors. ChemBioChem 23, e202200282 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bishop, M. D. et al. Fabrication of carbon nanotube field-effect transistors in commercial silicon manufacturing facilities. Nat. Electron 3, 492–501 (2020).Article 
CAS 

Google Scholar 
Tans, S. J., Verschueren, A. R. M. & Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 393, 49–52 (1998).Article 
ADS 
CAS 

Google Scholar 
Fennell, J. F. et al. Nanowire chemical/biological sensors: status and a roadmap for the future. Angew. Chem. Int. Ed. 55, 1266–1281 (2016).Article 
CAS 

Google Scholar 
Jariwala, D., Sangwan, V. K., Lauhon, L. J., Marks, T. J. & Hersam, M. C. Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem. Soc. Rev. 42, 2824–2860 (2013).Article 
CAS 
PubMed 

Google Scholar 
Kim, S. N., Rusling, J. F. & Papadimitrakopoulos, F. Carbon nanotubes for electronic and electrochemical detection of biomolecules. Adv. Mater. 19, 3214–3228 (2007).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liu, L. et al. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science (1979) 368, 850–856 (2020).CAS 

Google Scholar 
Sun, W. et al. Precise pitch-scaling of carbon nanotube arrays within three-dimensional DNA nanotrenches. Science (1979) 368, 874–877 (2020).CAS 

Google Scholar 
Zhang, A. & Lieber, C. M. Nano-Bioelectronics. Chem. Rev. 116, 215–257 (2016).Article 
CAS 
PubMed 

Google Scholar 
Kauffman, D. R. & Star, A. Electronically monitoring biological interactions with carbon nanotube field-effect transistors. Chem. Soc. Rev. 37, 1197 (2008).Article 
CAS 
PubMed 

Google Scholar 
So, H. M. et al. Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements. J. Am. Chem. Soc. 127, 11906–11907 (2005).Article 
CAS 
PubMed 

Google Scholar 
Xu, X. et al. Reconfigurable carbon nanotube multiplexed sensing devices. Nano Lett. 18, 4130–4135 (2018).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Sorgenfrei, S. et al. Label-free single-molecule detection of DNA-hybridization kinetics with a carbon nanotube field-effect transistor. Nat. Nanotechnol. 6, 126–132 (2011).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Landry, M. P. et al. Single-molecule detection of protein efflux from microorganisms using fluorescent single-walled carbon nanotube sensor arrays. Nat. Nanotechnol. 12, 368–377 (2017).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Nakatsuka, N. et al. Aptamer–field-effect transistors overcome Debye length limitations for small-molecule sensing. Science (1979) 362, 319–324 (2018).CAS 

Google Scholar 
Xu, X. et al. Tuning electrostatic gating of semiconducting carbon nanotubes by controlling protein orientation in biosensing devices. Angew. Chem. 133, 20346–20351 (2021).Article 
ADS 
PubMed 

Google Scholar 
Choi, Y. et al. Single-molecule lysozyme dynamics monitored by an electronic circuit. Science (1979) 335, 319–324 (2012).CAS 

Google Scholar 
Sims, P. C. et al. Electronic measurements of single-molecule catalysis by cAMP-dependent protein kinase A. J. Am. Chem. Soc. 135, 7861–7868 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lerner, M. B. et al. Hybrids of a genetically engineered antibody and a carbon nanotube transistor for detection of prostate cancer biomarkers. ACS Nano 6, 5143 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Goldsmith, B. R. et al. Biomimetic chemical sensors using nanoelectronic readout of olfactory receptor proteins. ACS Nano 5, 5408–5416 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gwyther, R. E. A. et al. Differential bio-optoelectronic gating of semiconducting carbon nanotubes by varying the covalent attachment residue of a green fluorescent protein. Adv. Funct. Mater. 32, 2112374 (2022).Article 
CAS 

Google Scholar 
Thomas, S. K. et al. Site-specific protein photochemical covalent attachment to carbon nanotube side walls and its electronic impact on single molecule function. Bioconjug Chem. 31, 584–594 (2020).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Freeley, M., Gwyther, R. E. A., Jones, D. D. & Palma, M. DNA-directed assembly of carbon nanotube-protein hybrids. Biomolecules 11, 955 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Freeley, M. et al. Site-specific one-to-one click coupling of single proteins to individual carbon nanotubes: a single-molecule approach. J. Am. Chem. Soc. 139, 17834–17840 (2017).Article 
CAS 
PubMed 

Google Scholar 
Reddington, S., Watson, P., Rizkallah, P., Tippmann, E. & Jones, D. D. Genetically encoding phenyl azide chemistry: new uses and ideas for classical biochemistry. Biochem Soc. Trans. 41, 1177–1182 (2013).Article 
CAS 
PubMed 

Google Scholar 
Stern, E. et al. Importance of the debye screening length on nanowire field effect transistor sensors. Nano Lett. 7, 3405–3409 (2007).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Burnham, C. A. D., Leeds, J., Nordmann, P., O’Grady, J. & Patel, J. Diagnosing antimicrobial resistance. Nat. Rev. Microbiol. 2017 15:11 15, 697–703 (2017).CAS 

Google Scholar 
Matagne, A., Lamotte-Brasseur, J. & FRÈRE, J.-M. Catalytic properties of class A β-lactamases: efficiency and diversity. Biochemical J. 330, 581–598 (1998).Article 
CAS 

Google Scholar 
Petrosino, J., Cantu, C. & Palzkill, T. β-Lactamases: protein evolution in real time. Trends Microbiol 6, 323–327 (1998).Article 
CAS 
PubMed 

Google Scholar 
Jelsch, C., Mourey, L., Masson, J.-M. & Samama, J.-P. Crystal structure ofEscherichia coli TEM1 β-lactamase at 1.8 Å resolution. Proteins: Struct., Funct., Genet. 16, 364–383 (1993).Article 
CAS 
PubMed 

Google Scholar 
Ke, W., Bethel, C. R., Thomson, J. M., Bonomo, R. A. & Van Den Akker, F. Crystal structure of KPC-2: Insights into carbapenemase activity in class A β-lactamases. Biochemistry 46, 5732–5740 (2007).Article 
CAS 
PubMed 

Google Scholar 
Strynadka, N. C. J., Jensen, S. E., Alzari, P. M. & James, M. N. G. A potent new mode of β-lactamase inhibition revealed by the 1.7 Å X-ray crystallographic structure of the TEM-1-BLIP complex. Nat. Struct. Biol. 3, 290–297 (1996).Article 
CAS 
PubMed 

Google Scholar 
Brown, N. G. et al. Analysis of the binding forces driving the tight interactions between β-lactamase inhibitory protein-II (BLIP-II) and class A β-lactamases. J. Biol. Chem. 286, 32723–32735 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lim, D. et al. Crystal structure and kinetic analysis of β-lactamase inhibitor protein-II in complex with TEM-1 β-lactamase. Nat. Struct. Biol. 8, 848–852 (2001).Article 
CAS 
PubMed 

Google Scholar 
Brown, N. G., Chow, D. C. & Palzkill, T. BLIP-II is a highly potent inhibitor of Klebsiella pneumoniae carbapenemase (KPC-2). Antimicrob. Agents Chemother. 57, 3398–3401 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zaki, A. J. et al. Defined covalent assembly of protein molecules on graphene using a genetically encoded photochemical reaction handle. RSC Adv. 8, 5768–5775 (2018).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. bioRxiv 2021.10.04.463034 https://doi.org/10.1101/2021.10.04.463034 (2022).Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nat. 2021 596:7873 596, 583–589 (2021).CAS 

Google Scholar 
Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Setaro, A. et al. Preserving π-conjugation in covalently functionalized carbon nanotubes for optoelectronic applications. Nat. Commun. 8, 14281 (2017).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sugita, Y., Kitao, A. & Okamoto, Y. Multidimensional replica-exchange method for free-energy calculations. J. Chem. Phys. 113, 6042–6051 (2000).Article 
ADS 
CAS 

Google Scholar 
Jurrus, E. et al. Improvements to the APBS biomolecular solvation software suite. Protein Sci. 27, 112–128 (2018).Article 
CAS 
PubMed 

Google Scholar 
Zheng, H. Y. et al. Electrostatic gating in carbon nanotube aptasensors. Nanoscale 8, 13659–13668 (2016).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Heller, I. et al. Identifying the mechanism of biosensing with carbon nanotube transistors. Nano Lett. 8, 591–595 (2008).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Brown, N. G. G. & Palzkill, T. Identification and characterization of β-lactamase inhibitor protein-II (BLIP-II) interactions with β-lactamases using phage display. Protein Eng., Des. Selection 23, 469–478 (2010).Article 
CAS 

Google Scholar 
Brown, N. G., Chow, D. C., Ruprecht, K. E. & Palzkill, T. Identification of the β-Lactamase Inhibitor Protein-II (BLIP-II) interface residues essential for binding affinity and specificity for class A β-lactamases. J. Biol. Chem. 288, 17156–17166 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gfeller, D., Michielin, O. & Zoete, V. SwissSidechain: a molecular and structural database of non-natural sidechains. Nucleic Acids Res 41, D327–D332 (2013).Article 
CAS 
PubMed 

Google Scholar 
Bekker, H. et al. GROMACS – a parallel computer for molecular-dynamics simulations. Phys. Comput. 7, 252–256 (1993).
Google Scholar 
Pronk, S. et al. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29, 845–854 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Best, R. B. et al. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ1 and χ2 Dihedral Angles. J. Chem. Theory Comput 8, 3257–3273 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sousa Da Silva, A. W. & Vranken, W. F. ACPYPE – AnteChamber PYthon Parser interfacE. BMC Res Notes 5, 1–8 (2012).Article 

Google Scholar 
Maier, J. A. et al. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput 11, 3696–3713 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Case, D. et al. Amber20. https://doi.org/10.13140/RG.2.2.25321.36969 (2020).Joung, I. S. & Cheatham, T. E. Determination of Alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B 112, 9020–9041 (2008).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Abraham, M. J. et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).Article 
ADS 

Google Scholar 
PLUMED consortium. Promoting transparency and reproducibility in enhanced molecular simulations. Nat. Methods 16, 670–673 (2019).Article 

Google Scholar 
Tribello, G. A., Bonomi, M., Branduardi, D., Camilloni, C. & Bussi, G. PLUMED 2: New feathers for an old bird. Comput Phys. Commun. 185, 604–613 (2014).Article 
ADS 
CAS 

Google Scholar 
Bussi, G. Hamiltonian replica exchange in GROMACS: a flexible implementation. Mol. Phys. 112, 379–384 (2014).Article 
ADS 
CAS 

Google Scholar 
Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).Article 
ADS 
PubMed 

Google Scholar 
Essmann, U. et al. A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593 (1995).Article 
ADS 
CAS 

Google Scholar 
Sosa-Peinado, A., Mustafi, D. & Makinen, M. W. Overexpression and biosynthetic deuterium enrichment of TEM-1 beta-lactamase for structural characterization by magnetic resonance methods. Protein Expr. Purif. 19, 235–245 (2000).Article 
CAS 
PubMed 

Google Scholar 
Ye, Q. et al. Solution‐processable carbon nanotube nanohybrids for multiplexed photoresponsive devices. Adv. Funct. Mater. 31, 2105719 (2021).Article 
CAS 

Google Scholar 
Gwyther, R. E. A., et al. Optimising CNT-FET biosensor design through modelling of biomolecular electrostatic gating and its application to β-lactamase detection, CNT-electrostatic-modelling, https://doi.org/10.5281/zenodo.13143029 (2024).

Hot Topics

Related Articles