Bio-integrated carbon capture and utilization: at the interface between capture chemistry and archaeal CO2 reduction

Dhakal, S. et al. Emissions Trends and Drivers. Climate Change 2022: Mitigation of Climate Change (IPCC, 2022).IEA. CO2 Emissions in 2022. https://doi.org/10.1787/12ad1e1a-en (OECD Publishing, 2023).United Nations Climate Change. COP28 Agreement Signals “Beginning of the End” of the Fossil Fuel Era. https://unfccc.int/news/cop28-agreement-signals-beginning-of-the-end-of-the-fossil-fuel-era (13 December 2023).IRENA. Renewable Energy Statistics 2023. (IRENA, 2023).IEA. Power Systems in Transition: Challenges and Opportunities Ahead for Electricity Security, https://doi.org/10.1787/4ad57c0e-en (OECD Publishing, 2020).Keramidas, K. et al. Global Energy and Climate Outlook 2019: Electrification for the Low-Carbon Transition. JRC Science for Policy Report. https://doi.org/10.2760/58255. (European Commission Publications office, 2020).Mitrovic, M. & Malone, A. Carbon capture and storage (CCS) demonstration projects in Canada. Energy Procedia 4, 5685–5691 (2011).Article 

Google Scholar 
U.S. Department of Energy & National Energy Technology Laboratory. Petra Nova W.A. Parish Post-Combustion CO2 Capture and Sequestration Demonstration Project. https://www.osti.gov/biblio/1608572 (U.S. Department of Energy, 2020).Rochelle, G. T. Amine scrubbing for CO2 capture. Science 325, 1652–1654 (2009).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Kazemifar, F. A review of technologies for carbon capture, sequestration, and utilization: Cost, capacity, and technology readiness. Greenh. Gases Sci. Technol. 12, 200–230 (2022).Article 
CAS 

Google Scholar 
Akram, M. et al. Performance evaluation of PACT Pilot-plant for CO2 capture from gas turbines with exhaust gas recycle. Int. J. Greenh. Gas. Control 47, 137–150 (2016).Article 
CAS 

Google Scholar 
Knudsen, J. N., Andersen, J., Jensen, J. N. & Biede, O. Evaluation of process upgrades and novel solvents for the post combustion CO2 capture process in pilot-scale. Energy Proced. 4, 1558–1565 (2011).Article 

Google Scholar 
Saeed, I. M. et al. Opportunities and challenges in the development of monoethanolamine and its blends for post-combustion CO2 capture. Int. J. Greenh. Gas. Control 79, 212–233 (2018).Article 
CAS 

Google Scholar 
Bravo, J. et al. Optimization of energy requirements for CO2 post-combustion capture process through advanced thermal integration. Fuel 283, 118940 (2021).Article 
CAS 

Google Scholar 
Nessi, E., Papadopoulos, A. I. & Seferlis, P. A review of research facilities, pilot and commercial plants for solvent-based post-combustion CO2 capture: Packed bed, phase-change and rotating processes. Int. J. Greenh. Gas. Control 111, 103474 (2021).Article 
CAS 

Google Scholar 
Lee, J. H. et al. KEPCO-China Huaneng post-combustion CO2 capture pilot test and cost evaluation. Korean Chem. Eng. Res. 58, 150–162 (2020).CAS 

Google Scholar 
Gao, T., Selinger, J. L. & Rochelle, G. T. Demonstration of 99% CO2 removal from coal flue gas by amine scrubbing. Int. J. Greenh. Gas. Control 83, 236–244 (2019).Article 
CAS 

Google Scholar 
Zarei, M., Cherif, A., Khaligh, V., Yoon, T. & Lee, C. J. Techno-economic assessment of amine-based CO2 capture process at coal-fired power plants: uncertainty analysis. ACS Sustain. Chem. Eng. 11, 14901–14912 (2023).Article 
CAS 

Google Scholar 
Duyar, M. S., Treviño, M. A. A. & Farrauto, R. J. Dual function materials for CO2 capture and conversion using renewable H2. Appl. Catal. B Environ. 168–169, 370–376 (2015). This work presents the thermochemical homolog to the BICCU process, where the Sabatier process is integrated with the carbon capture process by using dual-function materials.Article 

Google Scholar 
Chen, L. et al. Electrochemical reduction of carbon dioxide in a monoethanolamine capture medium. ChemSusChem 10, 4109–4118 (2017).Article 
CAS 
PubMed 

Google Scholar 
Prajapati, A. & Singh, M. R. Assessment of artificial photosynthetic systems for integrated carbon capture and conversion. ACS Sustain. Chem. Eng. 7, 5993–6003 (2019).Article 
CAS 

Google Scholar 
Song, C. et al. A novel concept of bicarbonate-carbon utilization via an absorption-microalgae hybrid process assisted with nutrient recycling from soybean wastewater. J. Clean. Prod. 237, 117864 (2019).Article 
CAS 

Google Scholar 
Sun, H. et al. Understanding the interaction between active sites and sorbents during the integrated carbon capture and utilization process. Fuel 286, 119308 (2021).Article 
CAS 

Google Scholar 
Jiang, Z. et al. Discovery of main group single Sb-N4active sites for CO2electroreduction to formate with high efficiency. Energy Environ. Sci. 13, 2856–2863 (2020).Article 
CAS 

Google Scholar 
Sieborg, M. U., Ottosen, L. D. M. & Kofoed, M. V. W. Enhanced process control of trickle-bed reactors for biomethanation by vertical profiling directed by hydrogen microsensor monitoring. Bioresour. Technol. 384, 129242 (2023).Article 
CAS 
PubMed 

Google Scholar 
Bartholomew, C. H. Mechanisms of nickel catalyst poisoning. Studies in Surface Science and Catalysis, Vol. 34 (Elsevier Science Publishers B.V., 1987).Holmes, D. E. & Smith, J. A. Biologically Produced Methane as a Renewable Energy Source. Adv. Appl. Microbiol. 97, 1–61 (2016).Article 
PubMed 

Google Scholar 
Bassani, I., et al Biogas upgrading by injection of hydrogen in a two-stage Continuous Stirred-Tank Reactor system. In Proc. Abstract from 14th World Congress on Anaerobic Digestion (2015).Tang, Q. et al. Optimal the ex-situ biogas biological upgrading to biomethane and its combined application with the anaerobic digestion stage. Energy Sources, Part A Recover. Util. Environ. Eff. 43, 2147–2159 (2021).CAS 

Google Scholar 
Fenske, C. F., Kirzeder, F., Strübing, D. & Koch, K. Biogas upgrading in a pilot-scale trickle bed reactor—long-term biological methanation under real application conditions. Bioresour. Technol. 376, 128868 (2023).Article 

Google Scholar 
Dupnock, T. L. & Deshusses, M. A. Detailed investigations of dissolved hydrogen and hydrogen mass transfer in a biotrickling filter for upgrading biogas. Bioresour. Technol. 290, 121780 (2019).Article 
CAS 
PubMed 

Google Scholar 
Asimakopoulos, K. et al. Scale up study of a thermophilic trickle bed reactor performing syngas biomethanation. Appl. Energy 290, 116771 (2021).Article 
CAS 

Google Scholar 
Cheng, G. et al. Microbial community development during syngas methanation in a trickle bed reactor with various nutrient sources. Appl. Microbiol. Biotechnol. 106, 5317–5333 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
European Biogas Association. Biongenic CO2 from the Biogas Industry. https://www.europeanbiogas.eu/wp-content/uploads/2022/10/Biogenic-CO2-from-the-biogas-industry_Sept2022-1.pdf (European Biogas Association, 2022).IEA, I. E. A. Global Energy Review: CO2 Emissions in 2021 (IEA, 2022).Sun, Q. et al. Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation. Renew. Sustain. Energy Rev. 51, 521–532 (2015).Article 
CAS 

Google Scholar 
Oliveira, J. M. S., Ottosen, L. D. M. & Kofoed, M. V. W. Continuous biomethanation of flue gas-CO2 using bio-integrated carbon capture and utilization. Bioresour. Technol. 399, 130506 (2024). This article demonstrates the first continuous operation of the BICCU process with flue gas as a carbon source for biomethanation.Article 
CAS 
PubMed 

Google Scholar 
Sieborg, M. U., Oliveria, J. M. S., Ottosen, L. D. M. & Kofoed, M. V. W. Flue-to-fuel: Bio-integrated carbon capture and utilization of dilute carbon dioxide gas streams to renewable methane. Energy Convers. Manag. 302, 118090 (2024). This paper presents the first validation of the BICCU concept, using amines as capture agents combined with a techno-economic outlook.Lange, H., Klose, A., Lippmann, W. & Urbas, L. Technical evaluation of the flexibility of water electrolysis systems to increase energy flexibility: A review. Int. J. Hydrog. Energy 48, 15771–15783 (2023).Article 
ADS 
CAS 

Google Scholar 
US Department of Energy. Hydrogen Shot. https://www.energy.gov/eere/fuelcells/hydrogen-shot.Wang, X. & Song, C. Carbon capture from flue gas and the atmosphere: a perspective. Front. Energy Res. 8, 560849 (2020).Metz, B., Davidson, O., de Coninck, H., Loos, M. & Meyer, L. IPCC Report: Carbon Dioxide Capture and Storage. (Cambridge University Press, 2005).Baker, R. W., Freeman, B., Kniep, J., Wei, X. & Merkel, T. CO2 capture from natural gas power plants using selective exhaust gas recycle membrane designs. Int. J. Greenh. Gas. Control 66, 35–47 (2017).Article 
CAS 

Google Scholar 
IEA. Cement. https://www.iea.org/energy-system/industry/cement (IEA, 2023).Sander, R. Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmos. Chem. Phys. 15, 4399–4981 (2015).Article 
ADS 
CAS 

Google Scholar 
Zhang, X., Song, Z., Gani, R. & Zhou, T. Comparative economic analysis of physical, chemical, and hybrid absorption processes for carbon capture. Ind. Eng. Chem. Res. 59, 2005–2012 (2020).Article 
CAS 

Google Scholar 
Aroua, M. K., Benamor, A. & Haji-Sulaiman, M. Z. Equilibrium constant for carbamate formation from monoethanolamine and its relationship with temperature. J. Chem. Eng. Data 44, 887–891 (1999).Article 
CAS 

Google Scholar 
Chowdhury, F. A., Yamada, H., Higashii, T., Goto, K. & Onoda, M. CO2 capture by tertiary amine absorbents: a performance comparison study. Ind. Eng. Chem. Res. 52, 8323–8331 (2013).Article 
CAS 

Google Scholar 
Dubois, L. & Thomas, D. Screening of aqueous amine-based solvents for postcombustion CO2 capture by chemical absorption. Chem. Eng. Technol. 35, 513–524 (2012).Article 
CAS 

Google Scholar 
Sakwattanapong, R., Aroonwilas, A. & Veawab, A. Behavior of reboiler heat duty for CO2 capture plants using regenerable single and blended alkanolamines. Ind. Eng. Chem. Res. 44, 4465–4473 (2005).Article 
CAS 

Google Scholar 
Zhang, J., Misch, R., Tan, Y. & Agar, D. W. Novel thermomorphic biphasic amine solvents for CO2 absorption and low-temperature extractive regeneration. Chem. Eng. Technol. 34, 1481–1489 (2011).Article 
CAS 

Google Scholar 
Engelbrecht, N., Sieborg, M. U., Ottosen, L. D. M. & Kofoed, M. V. W. Metabolic heat production impacts industrial upscaling of ex situ biomethanation trickle-bed reactors. Energy Convers. Manag. 299, 117769 (2024).Article 
CAS 

Google Scholar 
Schill, N. A., Liu, J. S. & Von Stockar, U. Thermodynamic analysis of growth of Methanobacterium thermoautotrophicum. Biotechnol. Bioeng. 64, 74–81 (1999). This work addresses the exothermic behaviour of hydrogenotrophic methanogenic conversion of H2 and CO2 with the organism Methanobacterium thermoautotrophicum, which can be exploited in the BICCU process.Article 
CAS 
PubMed 

Google Scholar 
Bottoms, R. R. Separating acid gases. US Patent 1,783,901 (1930).Yu, B. et al. Characterisation and kinetic study of carbon dioxide absorption by an aqueous diamine solution. Appl. Energy 208, 1308–1317 (2017).Article 
ADS 
CAS 

Google Scholar 
Lin, Y. J. & Rochelle, G. T. Optimum heat of absorption for CO2 capture using the advanced flash stripper. Int. J. Greenh. Gas. Control 53, 169–177 (2016).Article 
CAS 

Google Scholar 
Buvik, V., Vevelstad, S. J., Brakstad, O. G. & Knuutila, H. K. Stability of structurally varied aqueous amines for CO2 capture. Ind. Eng. Chem. Res. 60, 5627–5638 (2021).Article 
CAS 

Google Scholar 
Nakao, S., Yogo, K., Goto, K., Kai, T. & Yamada, H. Advanced CO2 Capture Technologies: Absorption, Adsorption, and Membrane Separation Methods. (Springer, 2019).Yagihara, K. et al. Assessing economic trade-off for advances in amine-based post-combustion capture technology. Int. J. Greenh. Gas. Control 132, 104068 (2024). This work addresses the trade-off between capture kinetics and energy demand in conventional solvent-based CO2 capture.Article 
CAS 

Google Scholar 
Høisæter, K. K., Vevelstad, S. J., Braakhuis, L. & Knuutila, H. K. Impact of solvent on the thermal stability of amines. Ind. Eng. Chem. Res. 61, 16179–16192 (2022).PubMed 
PubMed Central 

Google Scholar 
Nguyen, T., Hilliard, M. & Rochelle, G. T. Amine volatility in CO2 capture. Int. J. Greenh. Gas. Control 4, 707–715 (2010).Article 
CAS 

Google Scholar 
Fine, N. A., Goldman, M. J. & Rochelle, G. T. Nitrosamine formation in amine scrubbing at desorber temperatures. Environ. Sci. Technol. 48, 8777–8783 (2014).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Fine, N. A., Nielsen, P. T. & Rochelle, G. T. Decomposition of nitrosamines in CO2 capture by aqueous piperazine or monoethanolamine. Environ. Sci. Technol. 48, 5996–6002 (2014).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Thauer, R. K., Kaster, A. K., Seedorf, H., Buckel, W. & Hedderich, R. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat. Rev. Microbiol. 6, 579–591 (2008). This paper discusses CO2 reduction pathways across methanogens, which is crucial for understanding the methanogenic pathway for CO2 reduction to CH4.Article 
CAS 
PubMed 

Google Scholar 
Ray, S., Kuppam, C., Pandit, S. & Kumar, P. Biogas upgrading by hydrogenotrophic methanogens: an overview. Waste Biomass-. Valoriz. 14, 537–552 (2023).Article 
CAS 

Google Scholar 
Ferry, J. G. Carbonic anhydrases of anaerobic microbes. Bioorg. Med. Chem. 21, 1392–1395 (2013). This work addresses the presence and role of the carbon anhydrase enzymes in anaerobic microorganisms, whose activity could have a significant influence on the BICCU process.Article 
CAS 
PubMed 

Google Scholar 
Smith, K. S. & Ferry, J. G. A plant-type (β-class) carbonic anhydrase in the thermophilic methanoarchaeon Methanobacterium thermoautotrophicum. J. Bacteriol. 181, 6247–6253 (1999).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tsurumaru, H. et al. An extracellular [NiFe] hydrogenase mediating iron corrosion is encoded in a genetically unstable genomic island in Methanococcus maripaludis. Sci. Rep. 8, 1–10 (2018).Article 
CAS 

Google Scholar 
de Oliveira Maciel, A., Christakopoulos, P., Rova, U. & Antonopoulou, I. Carbonic anhydrase to boost CO2 sequestration: Improving carbon capture utilization and storage (CCUS). Chemosphere 299, 134419 (2022).Article 
PubMed 

Google Scholar 
Robinson, J. A. & Tiedje, J. M. Competition between sulfate-reducing and methanogenic bacteria for H2 under resting and growing conditions. Arch. Microbiol. 137, 26–32 (1984).Article 
CAS 

Google Scholar 
Chen, X., Ottosen, L. D. M. & Kofoed, M. V. W. How low can you go: Methane production of methanobacterium congolense at low CO2 concentrations. Front. Bioeng. Biotechnol. 7, 34 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Burkhardt, M. et al. Long term and demand-oriented biocatalytic synthesis of highly concentrated methane in a trickle bed reactor. Appl. Energy 240, 818–826 (2019).Article 
ADS 
CAS 

Google Scholar 
Viessmann. Green light for first industrial power-to-gas plant. https://www.viessmann.family/en/newsroom/company/green-light-for-first-industrial-power-to-gas-plant (2019).Lardon, L. A commercial-scale power-to-gas facility and its capabilities to provide energy storage services to the Danish energy system. https://rekk.hu/downloads/events/Laurent Lardon Electrochae Biocat project.pdf (2020).Tirunehe, G. & Norddahl, B. The influence of polymeric membrane gas spargers on hydrodynamics and mass transfer in bubble column bioreactors. Bioprocess Biosyst. Eng. 39, 613–626 (2016).Article 
CAS 
PubMed 

Google Scholar 
Miehle, M., Hackbarth, M., Gescher, J., Horn, H. & Hille-Reichel, A. Biological biogas upgrading in a membrane biofilm reactor with and without organic carbon source. Bioresour. Technol. 335, 125287 (2021).Article 
CAS 
PubMed 

Google Scholar 
Jayathilake, B. S. et al. Developing reactors for electrifying bio-methanation: a perspective from bio-electrochemistry. Sustain. Energy Fuels 6, 1249–1263 (2022).Article 
CAS 

Google Scholar 
Figueras, J., Benbelkacem, H., Dumas, C. & Buffiere, P. Syngas biomethanation: study of process performances at high syngas flow rate in pressurized stirred column. Bioresour. Technol. 376, 128936 (2023).Article 
CAS 
PubMed 

Google Scholar 
Jung, H., Yu, H. & Lee, C. Direct interspecies electron transfer enables anaerobic oxidation of sulfide to elemental sulfur coupled with CO2-reducing methanogenesis. iScience 26, 107504 (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fine, N. A. & Rochelle, G. T. Absorption of nitrogen oxides in aqueous amines. Energy Proced. 63, 830–847 (2014).Article 
CAS 

Google Scholar 
Klüber, H. D. & Conrad, R. Inhibitory effects of nitrate, nitrite, NO and N2O on methanogenesis by Methanosarcina barkeri and Methanobacterium bryantii. FEMS Microbiol. Ecol. 25, 331–339 (1998).Article 

Google Scholar 
Lin, Y. F. & Chen, K. C. Denitrification and methanogenesis in a co-immobilized mixed culture system. Water Res. 29, 35–43 (1995).Article 
CAS 

Google Scholar 
Becker, D. F. & Ragsdale, S. W. Activation of methyl-SCoM reductase to high specific activity after treatment of whole cells with sodium sulfide. Biochemistry 37, 2639–2647 (1998).Article 
CAS 
PubMed 

Google Scholar 
Luo, Q. et al. Experimental study on simultaneous absorption and desorption of CO2, SO2, and NOx using Aqueous N-methyldiethanolamine and dimethyl sulfoxide solutions. Energy Fuels 32, 3647–3659 (2018).Article 
CAS 

Google Scholar 
Susanti, D. & Mukhopadhyay, B. An intertwined evolutionary history of methanogenic archaea and sulfate reduction. PLoS One 7, 1–11 (2012).Article 

Google Scholar 
Liu, H., Wang, J., Wang, A. & Chen, J. Chemical inhibitors of methanogenesis and putative applications. Appl. Microbiol. Biotechnol. 89, 1333–1340 (2011).Article 
CAS 
PubMed 

Google Scholar 
Schnheit, P., Moll, J. & Thauer, R. K. Growth parameters (K s, μmax, Y s) of Methanobacterium thermoautotrophicum. Arch. Microbiol. 65, 59–65 (1980).Article 

Google Scholar 
Thema, M. et al. Optimized biological CO2-methanation with a pure culture of thermophilic methanogenic archaea in a trickle-bed reactor. Bioresour. Technol. 333, 125135 (2021).Jensen, M. B., Ottosen, L. D. M. & Kofoed, M. V. W. H2 gas-liquid mass transfer: A key element in biological Power-to-Gas methanation. Renew. Sustain. Energy Rev. 147, 111209 (2021). This work reviews the state-of-the-art biomethanation technology related to the key elements affecting the process. This should equip readers with an essential understanding of the limits and potentials of the current biomethanation technology for the conversion of gaseous CO2.Article 
CAS 

Google Scholar 
Liu, Y. & Whitman, W. B. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann. N. Y. Acad. Sci. 1125, 171–189 (2008).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Rose, A. D. et al. Technology Readiness Level: Guidance Principles for Renewable Energy technologies. European Commission https://doi.org/10.2777/577767 (Publications Office of the European Union, 2023).Zhu, Y. et al. Using polyethylene glycol to promote Nannochloropsis oceanica growth with 15 vol% CO2. Sci. Total Environ. 720, 137598 (2020).Article 
CAS 
PubMed 

Google Scholar 
Molitor, B., Mishra, A. & Angenent, L. T. Power-to-protein: converting renewable electric power and carbon dioxide into single cell protein with a two-stage bioprocess. Energy Environ. Sci. 12, 3515–3521 (2019). This work how CO2 can be a building block for various carbon-based molecules, such as single cell protein.Gong, G. et al. Metabolic engineering using acetate as a promising building block for the production of bio‐based chemicals. Eng. Microbiol. 2, 100036 (2022).Article 
CAS 

Google Scholar 
Medrano-García, J. D., Ruiz-Femenia, R. & Caballero, J. A. Revisiting classic acetic acid synthesis: optimal hydrogen consumption and carbon dioxide utilization. Comput. Aided Chem. Eng. 46, 145–150(2019).Luo, S. et al. Construction and modular implementation of the THETA cycle for synthetic CO2 fixation. Nat. Catal. 6, 1228–1240 (2023).Article 
CAS 

Google Scholar 
International Energy Agency. Global Hydrogen Review 2023 https://doi.org/10.1787/a15b8442-en (OECD Publishing, 2022).

Hot Topics

Related Articles