Thermal effects and ephaptic entrainment in Hodgkin–Huxley model

Park, K. S. Nervous system. In Humans and Electricity: Understanding Body Electricity and Applications, pp. 27–51 (Springer, 2023).Studer-Luethi, B., Jaeggi, S. M., Buschkuehl, M. & Perrig, W. J. Influence of neuroticism and conscientiousness on working memory training outcome. Pers. Individ. Differ. 53, 44–49 (2012).Article 

Google Scholar 
Gathercole, S. E. The development of memory. J. Child Psychol. Psychiatry Allied Discip. 39, 3–27 (1998).Article 
CAS 

Google Scholar 
Kandel, E. R. et al. Principles of neural science Vol. 4 (McGraw-hill, New York, 2000).
Google Scholar 
dos Santos Lima, G. Z. et al. Hippocampal and cortical communication around micro-arousals in slow-wave sleep. Sci. Rep. 9, 5876 (2019).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Lima, G. D. S. et al. Mouse activity across time scales: Fractal scenarios. PLoS ONE 9, e105092 (2014).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Katz & Schmitt. Eletric interaction between two adjacent nerve fibers. J. Physiol. 471–488 (1940).Arvanitaky. Effects evoked in an axon by the activity of a contiguous one. J. Physiol. 91–108 (1942).Hunt, T. & Jones, M. Fields or firings? Comparing the spike code and the electromagnetic field hypothesis. Front. Psychol. 14 (2023).Anastassiou, C. A., Perin, R., Markram, H. & Koch, C. Ephaptic coupling of cortical neurons. Nat. Neurosci. 14, 217–223 (2011).Article 
CAS 
PubMed 

Google Scholar 
Cunha, G. M., Corso, G., Miranda, J. G. V. & Dos Santos Lima, G. Z. Ephaptic entrainment in hybrid neuronal model. Sci. Rep. 12, 1–10 (2022).Article 

Google Scholar 
Jefferys, J. Nonsynaptic modulation of neuronal activity in the brain: Electric currents and extracellular ions. Physiol. Rev. 75, 689–723 (1995).Article 
CAS 
PubMed 

Google Scholar 
Francis, J. T., Gluckman, B. J. & Schiff, S. J. Sensitivity of neurons to weak electric fields. J. Neurosci. 23, 7255–7261 (2003).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Qiu, C., Shivacharan, R. S., Zhang, M. & Durand, D. M. Can neural activity propagate by endogenous electrical field?. J. Neurosci. 35, 15800–15811 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fröhlich, F. & McCormick, D. A. Endogenous electric fields may guide neocortical network activity. Neuron 67, 129–143 (2010).Article 
PubMed 
PubMed Central 

Google Scholar 
Anastassiou, C. A. & Koch, C. Ephaptic coupling to endogenous electric field activity: Why bother?. Curr. Opin. Neurobiol. 31, 95–103 (2015).Article 
CAS 
PubMed 

Google Scholar 
Pinotsis, D. A. & Miller, E. K. In vivo ephaptic coupling allows memory network formation. Cereb. Cortex 33, 9877–9895 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Bassett, D. S., Brown, J. A., Deshpande, V., Carlson, J. M. & Grafton, S. T. Conserved and variable architecture of human white matter connectivity. Neuroimage 54, 1262–1279 (2011).Article 
PubMed 

Google Scholar 
Han, K.-S. et al. Ephaptic coupling promotes synchronous firing of cerebellar purkinje cells. Neuron 100, 564–578 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Queenan, B. N., Ryan, T. J., Gazzaniga, M. S. & Gallistel, C. R. On the research of time past: The hunt for the substrate of memory. Ann. N. Y. Acad. Sci. 1396, 108–125 (2017).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Hedrick, T. & Waters, J. Effect of temperature on spiking patterns of neocortical layer 2/3 and layer 6 pyramidal neurons. Front. Neural Circ. 6, 28 (2012).
Google Scholar 
Yu, Y., Hill, A. P. & McCormick, D. A. Warm body temperature facilitates energy efficient cortical action potentials. PLoS Comput. Biol. 8, e1002456 (2012).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Burek, M., Follmann, R. & Rosa, E. Temperature effects on neuronal firing rates and tonic-to-bursting transitions. Biosystems 180, 1–6 (2019).Article 
PubMed 

Google Scholar 
Hodgkin, A. L. & Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500 (1952).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Moore, J. Temperature and drug effects on squid axon membrane ion conductances. In Federation proceedings, pp. 113 (Federation Amer Soc Exp Biol 9650 Rockville pike, Bethesda, MD 20814-3998, 1958).Cao, X.-J. & Oertel, D. Temperature affects voltage-sensitive conductances differentially in octopus cells of the mammalian cochlear nucleus. J. Neurophysiol. 94, 821–832 (2005).Article 
CAS 
PubMed 

Google Scholar 
Forrest, M. D. Can the thermodynamic Hodgkin–Huxley model of voltage-dependent conductance extrapolate for temperature?. Computation 2, 47–60 (2014).Article 

Google Scholar 
Tiwari, J. & Sikdar, S. Temperature-dependent conformational changes in a voltage-gated potassium channel. Eur. Biophys. J. 28, 338–345 (1999).Article 
CAS 
PubMed 

Google Scholar 
Carpenter, D. O. Temperature effects on pacemaker generation, membrane potential, and critical firing threshold in aplysia neurons. J. Gen. Physiol. 50, 1469–1484 (1967).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ishiko, N. & Loewenstein, W. R. Effects of temperature on the generator and action potentials of a sense organ. J. Gen. Physiol. 45, 105–124 (1961).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ritchie, M. E. Reaction and diffusion thermodynamics explain optimal temperatures of biochemical reactions. Sci. Rep. 8, 11105 (2018).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Rodríguez, B. M., Sigg, D. & Bezanilla, F. Voltage gating of shaker k+ channels: The effect of temperature on ionic and gating currents. J. Gen. Physiol. 112, 223–242 (1998).Article 
PubMed 
PubMed Central 

Google Scholar 
Liang, S. et al. Temperature-dependent activation of neurons by continuous near-infrared laser. Cell Biochem. Biophys. 53, 33–42 (2009).Article 
CAS 
PubMed 

Google Scholar 
Hodgkin, A. L. & Huxley, A. F. Currents carried by sodium and potassium ions through the membrane of the giant axon of loligo. J. Physiol. 116, 449–472 (1952).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sjodin, R. & Mullins, L. Oscillatory behavior of the squid axon membrane potential. J. Gen. Physiol. 42, 39–47 (1958).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Guttman, R. & with the technical assistance of Robert Barnhill. Temperature characteristics of excitation in space-clamped squid axons. J. Gen. Physiol. 49, 1007–1018 (1966).Hodgkin, A. & Huxley, A. Current and its application to conduction. J. Physiol. 117, 500–544 (1952).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Anastassiou, C. A., Perin, R., Markram, H. & Koch, C. Ephaptic coupling of cortical neurons. Nat. Neurosci. 14, 217 (2011).Article 
CAS 
PubMed 

Google Scholar 
Robertson, R. M. & Money, T. G. Temperature and neuronal circuit function: Compensation, tuning and tolerance. Curr. Opin. Neurobiol. 22, 724–734 (2012).Article 
CAS 
PubMed 

Google Scholar 
Peleg, M., Normand, M. D. & Corradini, M. G. The arrhenius equation revisited. Crit. Rev. Food Sci. Nutr. 52, 830–851 (2012).Article 
CAS 
PubMed 

Google Scholar 
Hodgkin, A. L. & Huxley, A. F. The components of membrane conductance in the giant axon of loligo. J. Physiol. 116, 473–496 (1952).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hodgkin, A. L., Huxley, A. F. & Katz, B. Measurement of current-voltage relations in the membrane of the giant axon of loligo. J. Physiol. 116, 424–448 (1952).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Izhikevich, E. M. Dynamical systems in neuroscience (MIT press, London, 2007).
Google Scholar 
Han, K.-S. et al. Ephaptic coupling promotes synchronous firing of cerebellar purkinje cells. Neuron 100, 564–578 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Schmidt, H., Hahn, G., Deco, G. & Knösche, T. R. Ephaptic coupling in white matter fibre bundles modulates axonal transmission delays. PLoS Comput. Biol. 17, e1007858 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cunha, G. M., Corso, G., Lima, M. M. & dos Santos Lima, G. Z. Electrophysiological damage to neuronal membrane alters ephaptic entrainment. Sci. Rep. 13, 11974 (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Binczak, S., Eilbeck, J. & Scott, A. C. Ephaptic coupling of myelinated nerve fibers. Phys. D 148, 159–174 (2001).Article 
MathSciNet 

Google Scholar 
Holt, G. R. & Koch, C. Electrical interactions via the extracellular potential near cell bodies. J. Comput. Neurosci. 6, 169–184 (1999).Article 
CAS 
PubMed 

Google Scholar 
Goldwyn, J. H. & Rinzel, J. Neuronal coupling by endogenous electric fields: cable theory and applications to coincidence detector neurons in the auditory brain stem. J. Neurophysiol. 115, 2033–2051 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Mechler, F. & Victor, J. D. Dipole characterization of single neurons from their extracellular action potentials. J. Comput. Neurosci. 32, 73–100 (2012).Article 
MathSciNet 
PubMed 

Google Scholar 
Hodgkin, A. & Katz, B. The effect of temperature on the electrical activity of the giant axon of the squid. J. Physiol. 109, 240 (1949).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fohlmeister, J. F. Voltage gating by molecular subunits of na+ and k+ ion channels: higher-dimensional cubic kinetics, rate constants, and temperature. J. Neurophysiol. 113, 3759–3777 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rosen, A. D. Nonlinear temperature modulation of sodium channel kinetics in gh3 cells. Biochim. Biophys. Acta (BBA) Biomembranes 1511, 391–396. https://doi.org/10.1016/S0005-2736(01)00301-7 (2001).Article 
CAS 
PubMed 

Google Scholar 
Pahlavan, B., Buitrago, N. & Santamaria, F. Macromolecular rate theory explains the temperature dependence of membrane conductance kinetics. Biophys. J . 122, 522–532 (2023).Article 
CAS 
PubMed 

Google Scholar 
Arrhenius, S. Über die dissociationswärme und den einfluss der temperatur auf den dissociationsgrad der elektrolyte. Z. Phys. Chem. 4, 96–116 (1889).Article 

Google Scholar 
Laidler, K. J. & King, M. C. The development of transition-state theory. J. Phys. Chem. 87, 2657–2664 (1983).Article 
CAS 

Google Scholar 
Mardia, K. V. Statistics of directional data (Academic press, USA, 1972).
Google Scholar 
Berens, P. et al. Circstat: A matlab toolbox for circular statistics. J. Stat. Softw. 31, 1–21 (2009).Article 

Google Scholar 
Georgopoulos, A. P., Kalaska, J. F., Caminiti, R. & Massey, J. T. On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J. Neurosci. 2, 1527–1537 (1982).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Georgopoulos, A. P., Schwartz, A. B. & Kettner, R. E. Neuronal population coding of movement direction. Science 233, 1416–1419 (1986).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Oppenheim, A. V. Discrete-time signal processing (Pearson Education, India, 1999).
Google Scholar 
Dayan, P. & Abbott, L. F. Theoretical neuroscience: Computational and mathematical modeling of neural systems (MIT press, London, 2005).
Google Scholar 
Takens, F. Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence, Warwick 1980: proceedings of a symposium held at the University of Warwick 1979/80, pp. 366–381 (Springer, 2006).Sauer, T. Interspike interval embedding of chaotic signals. Chaos Interdiscip. J. Nonlinear Sci. 5, 127–132 (1995).Article 

Google Scholar 
Snider, R., Kabara, J., Roig, B. & Bonds, A. Burst firing and modulation of functional connectivity in cat striate cortex. J. Neurophysiol. 80, 730–744 (1998).Article 
CAS 
PubMed 

Google Scholar 
Reich, D. S., Mechler, F., Purpura, K. P. & Victor, J. D. Interspike intervals, receptive fields, and information encoding in primary visual cortex. J. Neurosci. 20, 1964–1974 (2000).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kim, Y. & Panda, P. Visual explanations from spiking neural networks using inter-spike intervals. Sci. Rep. 11, 19037 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Thompson, S. M., Masukawa, L. M. & Prince, D. A. Temperature dependence of intrinsic membrane properties and synaptic potentials in hippocampal ca1 neurons in vitro. J. Neurosci. 5, 817–824 (1985).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ito, E., Ikemoto, Y. & Yoshioka, T. Thermodynamic implications of high q10 of thermotrp channels in living cells. Biophysics 11, 33–38 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Patapoutian, A., Peier, A. M., Story, G. M. & Viswanath, V. Thermotrp channels and beyond: mechanisms of temperature sensation. Nat. Rev. Neurosci. 4, 529–539 (2003).Article 
CAS 
PubMed 

Google Scholar 
Kashio, M. & Tominaga, M. Trp channels in thermosensation. Curr. Opin. Neurobiol. 75, 102591 (2022).Article 
CAS 
PubMed 

Google Scholar 
Avila, J., Lucas, J. J., Perez, M. & Hernandez, F. Role of tau protein in both physiological and pathological conditions. Physiol. Rev. (2004).dos Santos Lima, G. Z. et al. Disruption of neocortical synchronisation during slow-wave sleep in the rotenone model of Parkinson’s disease. J. Sleep Res. e13170 (2020).Lima, M. M., Targa, A. D., dos Santos Lima, G. Z., Cavarsan, C. F. & Torterolo, P. Macro and micro-sleep dysfunctions as translational biomarkers for parkinson’s disease. Int. Rev. Neurobiol. (2023).Kandel, E. R. & al. et. Princípios de Neurociências (artmed, Porto Alegre, 2014), 5 edn.Ruffini, G. et al. Realistic modeling of mesoscopic ephaptic coupling in the human brain. PLoS Comput. Biol. 16, e1007923 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Vroman, R., Klaassen, L. J. & Kamermans, M. Ephaptic communication in the vertebrate retina. Front. Hum. Neurosci. 7, 612 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles