End-of-life tire decontamination from 6PPD and upcycling

Wagner, S. et al. Tire wear particles in the aquatic environment—a review on generation, analysis, occurrence, fate and effects. Water Res. 139, 83–100 (2018).Article 
CAS 
PubMed 

Google Scholar 
Tian, Z. et al. A ubiquitous tire rubber-derived chemical induces acute mortality in coho salmon. Science 371, 185–189 (2021).Article 
CAS 
PubMed 

Google Scholar 
Brinkmann, M. et al. Acute toxicity of the tire rubber-derived chemical 6PPD-quinone to four fishes of commercial, cultural, and ecological importance. Environ. Sci. Technol. Lett. 9, 333–338 (2022).Article 
CAS 

Google Scholar 
Hiki, K. et al. Acute toxicity of a tire rubber-derived chemical, 6PPD quinone, to freshwater fish and crustacean species. Environ. Sci. Technol. Lett. 8, 779–784 (2021).Article 
CAS 

Google Scholar 
Du, B. et al. First report on the occurrence of N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD) and 6PPD-quinone as pervasive pollutants in human urine from south China. Environ. Sci. Technol. Lett. 9, 1056–1062 (2022).Article 
CAS 

Google Scholar 
Chen, X. et al. Analysis, environmental occurrence, fate and potential toxicity of tire wear compounds 6PPD and 6PPD-quinone. J. Hazard. Mater. 452, 131245 (2023).Article 
CAS 
PubMed 

Google Scholar 
Grynkiewicz-Bylina, B., Rakwic, B. & Słomka-Słupik, B. Tests of rubber granules used as artificial turf for football fields in terms of toxicity to human health and the environment. Sci. Rep. 12, 6683 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
2021 US Scrap Tire Management Summary (US Tire Manufacturers Association, 2021).Thomas, B. S. & Gupta, R. C. A comprehensive review on the applications of waste tire rubber in cement concrete. Renew. Sustain. Energy Rev. 54, 1323–1333 (2016).Article 
CAS 

Google Scholar 
Dabic-Miletic, S., Simic, V. & Karagoz, S. End-of-life tire management: a critical review. Environ. Sci. Pollution Res. 28, 68053–68070 (2021).Article 

Google Scholar 
Baker-Fales, M., Chen, T.-Y. & Vlachos, D. G. Scale-up of microwave-assisted, continuous flow, liquid phase reactors: application to 5-hydroxymethylfurfural production. Chem. Eng. J. 454, 139985 (2023).Article 
CAS 

Google Scholar 
Osorio-Vargas, P. et al. Catalytic pyrolysis of used tires on noble-metal-based catalysts to obtain high-value chemicals: reaction pathways. Catal. Today 394–396, 475–485 (2022).Article 

Google Scholar 
Undri, A., Meini, S., Rosi, L., Frediani, M. & Frediani, P. Microwave pyrolysis of polymeric materials: waste tires treatment and characterization of the value-added products. J. Anal. Appl. Pyrolysis 103, 149–158 (2013).Article 
CAS 

Google Scholar 
Song, Z. et al. Microwave pyrolysis of tire powders: evolution of yields and composition of products. J. Anal. Appl. Pyrolysis 123, 152–159 (2017).Article 
CAS 

Google Scholar 
Bing, W. et al. Microwave fast pyrolysis of waste tires: effect of microwave power on product composition and quality. J. Anal. Appl. Pyrolysis 155, 104979 (2021).Article 
CAS 

Google Scholar 
Luo, Y., Selvam, E., Vlachos, D. G. & Ierapetritou, M. Economic and environmental benefits of modular microwave-assisted polyethylene terephthalate depolymerization. ACS Sustain. Chem. Eng. 11, 4209–4218 (2023).Article 
CAS 

Google Scholar 
Rajasekhar Reddy, B. et al. Microwave assisted heating of plastic waste: effect of plastic/susceptor (SiC) contacting patterns. Chem. Eng. Process. – Proc. Inten. 182, 109202 (2022).Article 
CAS 

Google Scholar 
Kim, T., Lee, J. & Lee, K. H. Full graphitization of amorphous carbon by microwave heating. RSC Adv. 6, 24667–24674 (2016).Article 
CAS 

Google Scholar 
Xu, J. et al. High-value utilization of waste tires: a review with focus on modified carbon black from pyrolysis. Sci. Total Environ. 742, 140235 (2020).Article 
CAS 
PubMed 

Google Scholar 
Boucher, O. & Reddy, M. S. Climate trade-off between black carbon and carbon dioxide emissions. Energy Policy 36, 193–200 (2008).Article 

Google Scholar 
Osorio-Vargas, P. et al. Valorization of waste tires via catalytic fast pyrolysis using palladium supported on natural halloysite. Ind. Eng. Chem. Res. 60, 18806–18816 (2021).Article 
CAS 

Google Scholar 
COSMO-RS (SCM, 2023).Walker, T. W. et al. Recycling of multilayer plastic packaging materials by solvent-targeted recovery and precipitation. Sci. Adv. 6, eaba7599 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Wojeicchowski, J. P., Ferreira, A. M., Abranches, D. O., Mafra, M. R. & Coutinho, J. A. P. Using COSMO-RS in the design of deep eutectic solvents for the extraction of antioxidants from Rosemary. ACS Sustain. Chem. Eng. 8, 12132–12141 (2020).Article 
CAS 

Google Scholar 
Remler, R. F. The solvent properties of acetone. Ind. Eng. Chem. 15, 717–720 (1923).Article 
CAS 

Google Scholar 
Giakoumakis, N. S. et al. Total revalorization of high impact polystyrene (HIPS): enhancing styrene recovery and upcycling of the rubber phase. Green Chem. 26, 340–352 (2024).Article 
CAS 

Google Scholar 
Cheng, H., Hu, Y. & Reinhard, M. Environmental and health impacts of artificial turf: a review. Environ. Sci. Technol. 48, 2114–2129 (2014).Article 
CAS 
PubMed 

Google Scholar 
Challis, J. K. et al. Occurrences of tire rubber-derived contaminants in cold-climate urban runoff. Environ. Sci. Technol. Lett. 8, 961–967 (2021).Article 
CAS 

Google Scholar 
Baker-Fales, M., Gutiérrez-Cano, J. D., Catalá-Civera, J. M. & Vlachos, D. G. Temperature-dependent complex dielectric permittivity: a simple measurement strategy for liquid-phase samples. Sci. Rep. 13, 18171 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
How Much Carbon Dioxide is Produced per Kilowatthour of U.S. Electricity Generation? (US Energy Information Administration, 2022).Chen, L. et al. Solar-light-activated periodate for degradation and detoxification of highly toxic 6PPD-quinone at environmental levels. Nat. Water 2, 453–463 (2024).Article 
CAS 

Google Scholar 
Liu, J. et al. Reductive defluorination of branched per- and polyfluoroalkyl substances with cobalt complex catalysts. Environ. Sci. Technol. Lett. 5, 289–294 (2018).Article 
CAS 

Google Scholar 
Toppinen, S., Rantakyla, T.-K., Salmi, T. & Aittamaa, J. Kinetics of the liquid-phase hydrogenation of benzene and some monosubstituted alkylbenzenes over a nickel catalyst. Ind. Eng. Chem. Res. 35, 1824–1833 (1996).Article 
CAS 

Google Scholar 
Sinfelt, J. H. Catalytic hydrogenolysis on metals. Catal. Letters 9, 159–172 (1991).Article 
CAS 

Google Scholar 
Mitra, J., Zhou, X. & Rauchfuss, T. Pd/C-catalyzed reactions of HMF: decarbonylation, hydrogenation, and hydrogenolysis. Green Chem. 17, 307–313 (2015).Article 
CAS 

Google Scholar 
Pelckmans, M., Renders, T., Van De Vyver, S. & Sels, B. F. Bio-based amines through sustainable heterogeneous catalysis. Green Chem. 19, 5303–5331 (2017).Article 
CAS 

Google Scholar 
Benbrook, D. M. et al. Biologically active heteroarotinoids exhibiting anticancer activity and decreased toxicity. J. Med. Chem. 40, 3567–3583 (1997).Article 
CAS 
PubMed 

Google Scholar 
Gutierrez-Cano, J. D. et al. A new stand-alone microwave instrument for measuring the complex permittivity of materials at microwave frequencies. IEEE Trans. Instrum. Meas. 69, 3595–3605 (2020).Article 

Google Scholar 
Pye, C. C., Ziegler, T., Lenthe, E. V. & Louwen, J. N. An implementation of the conductor-like screening model of solvation within the Amsterdam density functional package—Part II. COSMO for real solvents. Can. J. Chem. 87, 790–797 (2009).Article 
CAS 

Google Scholar 
Omnic 8.2 (Thermo Fisher Scientific, 2010).TRIOS 5.1.1 (TA Instruments, 2024).Omega TRH Central 1.3 (OMEGA USB Products, 2013).ASPEN Suite (AspenTech, 2024).

Hot Topics

Related Articles