Molecular design of reactive polycaprolactone that can be induced into shape-memory materials promotes further functionalization

Satti SM, Shah AA. Polyester‐based biodegradable plastics: an approach towards sustainable development. Lett Appl Microbiol 2020;70:413–30. https://doi.org/10.1111/lam.13287Article 
CAS 
PubMed 

Google Scholar 
Becker G, Wurm FR. Functional biodegradable polymers via ring-opening polymerization of monomers without protective groups. Chem Soc Rev 2018;47:7739–82. https://doi.org/10.1039/c8cs00531aArticle 
CAS 
PubMed 

Google Scholar 
Nakamura A, Kobayashi N, Koga N, Iino R. Positive charge introduction on the surface of thermostabilized PET hydrolase facilitates PET binding and degradation. ACS Catal. 2021;11:8550–64. https://doi.org/10.1021/acscatal.1c01204Article 
CAS 

Google Scholar 
Lu H, Diaz DJ, Czarnecki N-J, Zhu C, Kim W, Shroff R, et al. Machine learning-aided engineering of hydrolases for PET depolymerization. Nature. 2022;604:662–7. https://doi.org/10.1038/s41586-022-04599-zArticle 
CAS 
PubMed 

Google Scholar 
Yamashita T, Matsumoto T, Yamada R, Ogino H. Display of PETase on the cell surface of Escherichia coli using the anchor protein PgsA. Appl Biochem Biotechnol 2024 https://doi.org/10.1007/s12010-023-04837-8Mecerreyes D, Humes J, Miller R-D, Hedrick J-L, Detrembleur C, Lecomte P, et al. First example of an unsymmetrical difunctional monomer polymerizable by two living/controlled methods. Macromol Rapid Commun 2000;21:779–84.Article 
CAS 

Google Scholar 
Groner MD, Fabreguette FH, Elam JW, George SM. Low-temperature Al2O3 atomic layer deposition. Chem Mater 2004;16:639–45. https://doi.org/10.1021/cm0304546Article 
CAS 

Google Scholar 
Alteheld A, Feng Y, Kelch S, Lendlein A. Biodegradable, amorphous copolyester‐urethane networks having shape‐memory properties. Angew Chem Int Ed 2005;44:1188–92. https://doi.org/10.1002/anie.200461360Article 
CAS 

Google Scholar 
Ebara M, Uto K, Idota N, Hoffman J, Aoyagi T. The taming of the cell: shape-memory nanopatterns direct cell orientation. Int J Nanomed 2014;9:117–26. https://doi.org/10.2147/ijn.s50677Article 
CAS 

Google Scholar 
Uto K, Aoyagi T, DeForest CA, Hoffman AS, Ebara M. A combinational effect of “bulk” and “surface” shape‐memory transitions on the regulation of cell alignment. Adv Healthcare Mater. 2017;6 https://doi.org/10.1002/adhm.201601439Iwamatsu K, Uto K, Takeuchi Y, Hoshi T, Aoyagi T. Preparation of temperature-responsive, cationized, poly(ε-caprolactone)-based, cross-linked materials by a macromonomer design and positive charge control on the surface. Polym J 2018;50:447–54. https://doi.org/10.1038/s41428-018-0030-1Article 
CAS 

Google Scholar 
Makiguchi K, Satoh T, Kakuchi T. Diphenyl phosphate as an efficient cationic organocatalyst for controlled/living ring-opening polymerization of δ-valerolactone and ε-caprolactone. Macromolecules. 2011;44:1999–2005. https://doi.org/10.1021/ma200043xArticle 
CAS 

Google Scholar 
Takao A, Fusae M, Yu N. Preparation of cross-linked aliphatic polyester and application to thermo-responsive material. J Controlled Release 1994;32:87–96. https://doi.org/10.1016/0168-3659(94)90228-3Article 

Google Scholar 
Uto K, Yamamoto K, Hirase S, Aoyagi T. Temperature-responsive cross-linked poly(ε-caprolactone) membrane that functions near body temperature. J Controlled Release 2006;110:408–13. https://doi.org/10.1016/j.jconrel.2005.10.024Article 
CAS 

Google Scholar 
Zako T, Matsushita S, Hoshi T, Aoyagi T. Direct surface modification of polycaprolactone-based shape memory materials to introduce positive charge aiming to enhance cell affinity. Materials. 2021;14:5797 https://doi.org/10.3390/ma14195797Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Houk K-N, Jabbari A, Hall H-K, Alemán C. Why δ-valerolactone polymerizes and γ-butyrolactone does not. J Org Chem 2008;73:2674–8. https://doi.org/10.1021/jo702567vArticle 
CAS 
PubMed 

Google Scholar 
Moore T, Adhikari R, Gunatillake P. Chemosynthesis of bioresorbable poly(γ-butyrolactone) by ring-opening polymerisation: a review. Biomaterials. 2005;26:3771–82. https://doi.org/10.1016/j.biomaterials.2004.10.002Article 
CAS 
PubMed 

Google Scholar 
Lenoir S, Riva R, Lou X, Detrembleur CH, Jérôme R, Lecomte PH. Ring-opening polymerization of α-chloro-ε-caprolactone and chemical modification of poly(α-chloro-ε-caprolactone) by atom transfer radical processes. Macromolecules. 2004;37:4055–61. https://doi.org/10.1021/ma035003lArticle 
CAS 

Google Scholar 
Wang SW, Lin YK, Fang JY, Lee R-S. Photo-responsive polymeric micelles and prodrugs: synthesis and characterization. RSC Adv. 2018;8:29321–37. https://doi.org/10.1039/c8ra04580aArticle 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bolley A, Mameri S, Dagorne S. Controlled and highly effective ring‐opening polymerization of α‐chloro‐ε‐caprolactone using Zn‐ and Al‐based catalysts. J Polym Sci 2020;58:1197–206. https://doi.org/10.1002/pol.20190214Article 
CAS 

Google Scholar 
Yin G, Chen G, Zhou Z, Li Q. Modification of PEG-b-PCL block copolymer with high melting temperature by the enhancement of POSS crystal and ordered phase structure. RSC Adv. 2015;5:33356–63. https://doi.org/10.1039/c5ra01971kArticle 
CAS 

Google Scholar 
Bexis P, Thomas AW, Bell CA, Dove A-P. Synthesis of degradable poly(ε-caprolactone)-based graft copolymers via a “grafting-from” approach. Polym Chem 2016;7:7126–34. https://doi.org/10.1039/c6py01674jArticle 
CAS 

Google Scholar 
Liu M, Vladimirov N, Fréchet J-M-J. A new approach to hyperbranched polymers by ring-opening polymerization of an ab monomer:  4-(2-hydroxyethyl)-ε-caprolactone. Macromolecules. 1999;32:6881–4. https://doi.org/10.1021/ma990785xArticle 
CAS 

Google Scholar 
Tian D, Dubois PH, Jérôme R. Macromolecular engineering of polylactones and polylactides. 23. synthesis and characterization of biodegradable and biocompatible homopolymers and block copolymers based on 1,4,8-Trioxa[4.6]Spiro-9-Undecanone. Macromolecules. 1997;30:1947–54. https://doi.org/10.1021/ma961614kArticle 
CAS 

Google Scholar 
Taniguchi I, Lovell N-G. Low-temperature processable degradable polyesters. Macromolecules. 2012;45:7420–8. https://doi.org/10.1021/ma301230yArticle 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhou, Z, Meng, Y, Wei, C, Bai, Y, Wang, X, Quan, D, et al. Linear shape memory polyester with programmable splitting of crystals. Macromol Mater Eng. 2021;306 https://doi.org/10.1002/mame.202100254Van Horn BA, Wooley KL. Toward cross-linked degradable polyester materials:  investigations into the compatibility and use of reductive amination chemistry for cross-linking. Macromolecules. 2007;40:1480–8. https://doi.org/10.1021/ma061654gArticle 
CAS 

Google Scholar 
Mecerreyes D, Miller R-D, Hedrick J-L, Detrembleur C, Jérôme R. Ring-opening polymerization of 6-hydroxynon-8-enoic acid lactone: novel biodegradable copolymers containing allyl pendent groups. J Polym Sci Part A: Polym Chem 2000;38:870–5.Article 
CAS 

Google Scholar 
Lou X, Detrembleur C, Lecomte PH, Jérôme R. Living ring-opening (CO)polymerization of 6,7-Dihydro-2(5H)-Oxepinone into unsaturated aliphatic polyesters. Macromolecules. 2001;34:5806–11.Article 
CAS 

Google Scholar 
El Jundi A, Buwalda S, Bethry A, Hunger S, Coudane J, Bakkour Y, et al. Double-hydrophilic block copolymers based on functional poly(ε-Caprolactone)s for pH-dependent controlled drug delivery. Biomacromolecules. 2019;21:397–407. https://doi.org/10.1021/acs.biomac.9b01006Article 
CAS 
PubMed 

Google Scholar 
Wang G, Shi Y, Fu Z, Yang W, Huang Q, Zhang Y. Controlled synthesis of poly(ε-Caprolactone)-graft-polystyrene by atom transfer radical polymerization with poly(ε-Caprolactone-Co-α-Bromo-ε-Caprolactone) copolymer as macroinitiator. Polymer. 2005;46:10601–6. https://doi.org/10.1016/j.polymer.2005.06.105Article 
CAS 

Google Scholar 
Gao C, Tsou CH, Zeng CY, Yuan L, Peng R, Zhang XM. Organocatalyzed ring-opening copolymerization of α-Bromo-γ-butyrolactone with ε-caprolactone for the synthesis of functional aliphatic polyesters – pre-polymers for graft copolymerization. Des Monomers Polym 2018;21:193–201. https://doi.org/10.1080/15685551.2018.1550288Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lee R, Huang Y. Synthesis and characterization of amphiphilic block–graft MPEG‐b‐(PαN3CL‐g‐alkyne) degradable copolymers by ring‐opening polymerization and click chemistry. J Polym Sci, Part A Polym Chem 2008;46:4320–31. https://doi.org/10.1002/pola.22741Article 
CAS 

Google Scholar 
Suksiriworapong J, Sripha K, Junyaprasert VB. Synthesis and characterization of bioactive molecules grafted on poly(ɛ-Caprolactone) by “click” chemistry. Polymer. 2010;51:2286–95. https://doi.org/10.1016/j.polymer.2010.03.034Article 
CAS 

Google Scholar 
Conte C, Costabile G, d’Angelo I, Pannico M, Musto P, Grassia G, et al. Skin transport of PEGylated poly(ε-Caprolactone) nanoparticles assisted by (2-Hydroxypropyl)-β-cyclodextrin. J Colloid Interface Sci 2015;454:112–20. https://doi.org/10.1016/j.jcis.2015.05.010Article 
CAS 
PubMed 

Google Scholar 
Riva R, Lussis P, Lenoir S, Jérôme C, Jérôme R, Lecomte P. Contribution of “click chemistry” to the synthesis of antimicrobial aliphatic copolyester. Polymer. 2008;49:2023–8. https://doi.org/10.1016/j.polymer.2008.03.008Article 
CAS 

Google Scholar 
Ebara M, Kotsuchibashi Y, Uto K, Aoyagi T, Kim YJ, Narain R, et al. Smart Biomaterials, NIMS Monographs, Springer Tokyo, 2014, p. 321-36.Leroux F, Campagne C, Perwuelz A, Gengembre L. Polypropylene film chemical and physical modifications by dielectric barrier discharge plasma treatment at atmospheric pressure. J Colloid Interface Sci 2008;328:412–20. https://doi.org/10.1016/j.jcis.2008.09.062Article 
CAS 
PubMed 

Google Scholar 
Maegawa K, Tanimoto H, Onishi S, Tomohiro T, Morimoto T, Kakiuchi K. Taming the reactivity of alkyl azides by intramolecular hydrogen bonding: site-selective conjugation of unhindered diazides. Org Chem Front. 2021;8:5793–803. https://doi.org/10.1039/D1QO01088CArticle 
CAS 

Google Scholar 
Wang J, Horwitz MA, Dürr AB, Ibba F, Pupo G, Gao Y, et al. Asymmetric azidation under hydrogen bonding phase-transfer catalysis: a combined experimental and computational study. J Am Chem Soc. 2022;144:4572–84. https://doi.org/10.1021/jacs.1c13434Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Uto K, Matsushita Y, Ebara M. Multiphase PCL semi-interpenetrating networks exhibiting the triple- and stress-free two-way shape memory effect. Polym Chem 2023;14:1478–87. https://doi.org/10.1039/d2py01607aArticle 
CAS 

Google Scholar 

Hot Topics

Related Articles