Understanding the interplay between electrocatalytic C(sp3)‒C(sp3) fragmentation and oxygenation reactions

Xia, R., Overa, S. & Jiao, F. Emerging electrochemical processes to decarbonize the chemical industry. JACS Au 2, 1054–1070 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
National Academy of Sciences, National Academy of Engineering & National Research Council America’s Energy Future: Technology and Transformation (National Academies Press, 2009).Schiffer, Z. J. & Manthiram, K. Electrification and decarbonization of the chemical industry. Joule 1, 10–14 (2017).Article 

Google Scholar 
Daehn, K. et al. Innovations to decarbonize materials industries. Nat. Rev. Mater. 7, 275–294 (2021).Article 

Google Scholar 
Chen, B. & Sargent, E. H. What does net zero by 2050 mean to the solar energy materials researcher? Matter 5, 1322–1325 (2022).Article 

Google Scholar 
Van Geem, K. M., Galvita, V. V. & Marin, G. B. Making chemicals with electricity. Science 364, 734–735 (2019).Article 
PubMed 

Google Scholar 
Lopez, G., Artetxe, M., Amutio, M., Bilbao, J. & Olazar, M. Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review. Renew. Sustain. Energy Rev. 73, 346–368 (2017).Article 
CAS 

Google Scholar 
Vollmer, I. et al. Beyond mechanical recycling: giving new life to plastic waste. Angew. Chem. Int. Ed. 59, 15402–15423 (2020).Article 
CAS 

Google Scholar 
Häußler, M., Eck, M., Rothauer, D. & Mecking, S. Closed-loop recycling of polyethylene-like materials. Nature 590, 423–427 (2021).Article 
PubMed 

Google Scholar 
Lucky, C., Wang, T. & Schreier, M. Electrochemical ethylene oxide synthesis from ethanol. ACS Energy Lett. 7, 1316–1321 (2022).Article 
CAS 

Google Scholar 
Goetz, M. K. K., Bender, M. T. & Choi, K. S. Predictive control of selective secondary alcohol oxidation of glycerol on NiOOH. Nat. Commun. 13, 5848 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Luo, H. et al. Progress and perspectives in photo- and electrochemical-oxidation of biomass for sustainable chemicals and hydrogen production. Adv. Energy Mater. 11, 2101180 (2021).Article 
CAS 

Google Scholar 
You, B., Liu, X., Jiang, N. & Sun, Y. A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization. J. Am. Chem. Soc. 138, 13639–13646 (2016).Article 
CAS 
PubMed 

Google Scholar 
Zhu, C., Ang, N. W. J., Meyer, T. H., Qiu, Y. & Ackermann, L. Organic electrochemistry: molecular syntheses with potential. ACS Cent. Sci. 7, 415–431 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Newhouse, T. & Baran, P. S. If C–H bonds could talk: selective C–H bond oxidation. Angew. Chem. Int. Ed. 50, 3362–3374 (2011).Article 
CAS 

Google Scholar 
Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Peters, B. K. et al. Scalable and safe synthetic organic electroreduction inspired by Li-ion battery chemistry. Science 363, 838–845 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Park, S., Vohs, J. M. & Gorte, R. J. Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature 404, 265–267 (2000).Article 
CAS 
PubMed 

Google Scholar 
Hibino, T. et al. A low-operating-temperature solid oxide fuel cell in hydrocarbon–air mixtures. Science 288, 2031–2033 (2000).Article 
CAS 
PubMed 

Google Scholar 
Brummer, S. B. & Turner, M. J. Oxidation and adsorption of hydrocarbons on noble metal electrodes. III. CH-type and O-type intermediates during the oxidative adsorption of propane on platinum. J. Phys. Chem. 71, 2825–2837 (1967).Article 
CAS 

Google Scholar 
Barger, H. J. Jr & Coleman, A. J. Hydrogen–deuterium exchange of propane on a fuel-cell electrode. J. Phys. Chem. 72, 2285–2286 (1968).Article 
CAS 

Google Scholar 
Shropshire, J. A. & Horowitz, H. H. Adsorption and electrooxidation of butane on platinum black in H2SO4. J. Electrochem. Soc. 113, 490–495 (1966).Article 
CAS 

Google Scholar 
Bockris, J. O., Gileadi, E. & Stoner, G. E. The anodic oxidation of saturated hydrocarbons. Mechanistic study. J. Phys. Chem. 73, 427–434 (1969).Article 
CAS 

Google Scholar 
Grubb, W. T. & Lazarus, M. E. Carbon dioxide determination during the galvanostatic oxidation of adsorbed propane intermediates. J. Electrochem. Soc. 114, 360–361 (1967).Article 
CAS 

Google Scholar 
Brummer, S. B., Ford, J. I. & Turner, M. J. The adsorption and oxidation of hydrocarbons on noble metal electrodes. I. Propane adsorption on smooth platinum electrodes. J. Phys. Chem. 69, 3424–3433 (1965).Article 
CAS 

Google Scholar 
Brummer, S. B. & Turner, M. J. in Hydrocarbon Fuel Cell Technology (ed. Baker, B. S.) 408–428 (Academic Press, 1965).Niedrach, L. W., Gilman, S. & Weinstock, I. Studies of hydrocarbon fuel cell anodes by the multipulse potentiodynamic method: I. behavior of ethane on conducting-porous-Teflon electrodes. J. Electrochem. Soc. 112, 1161–1166 (1965).Article 
CAS 

Google Scholar 
Gilman, S. Studies of hydrocarbon surface processes by the multipulse potentiodynamic method. Part 1. Kinetics and mechanisms of ethane adsorption on platinum. J. Chem. Soc. Faraday Trans. 61, 2546–2560 (1965).Article 
CAS 

Google Scholar 
Lamy, C. et al. Recent advances in the development of direct alcohol fuel cells (DAFC). J. Power Sources 105, 283–296 (2002).Article 
CAS 

Google Scholar 
Li, N. H., Sun, S. G. & Chen, S. P. Studies on the role of oxidation states of the platinum surface in electrocatalytic oxidation of small primary alcohols. J. Electroanal. Chem. 430, 57–67 (1997).Article 
CAS 

Google Scholar 
Puthiyapura, V. K., Brett, D. J. L., Russell, A. E., Lin, W. F. & Hardacre, C. Biobutanol as fuel for direct alcohol fuel cells—investigation of Sn-modified Pt catalyst for butanol electro-oxidation. ACS Appl. Mater. Interfaces 8, 12859–12870 (2016).Article 
CAS 
PubMed 

Google Scholar 
Rodrigues, I. D. A., De Souza, J. P. I., Pastor, E. & Nart, F. C. Cleavage of the C–C bond during the electrooxidation of 1-propanol and 2-propanol: effect of the Pt morphology and of codeposited Ru. Langmuir 13, 6829–6835 (1997).Article 
CAS 

Google Scholar 
Li, N. H. & Sun, S. G. In situ FTIR spectroscopic studies of the electrooxidation of C4 alcohol on a platinum electrode in acid solutions. Part I. Reaction mechanism of 1-butanol oxidation. J. Electroanal. Chem. 436, 65–72 (1997).Pastor, E. et al. Spectroscopic investigations of C3 primary alcohols on platinum electrodes in acid solutions. Part I. n-Propanol. J. Electroanal. Chem. 350, 97–116 (1993).Article 
CAS 

Google Scholar 
Brummer, S. B. in Fuel Cell Systems-II (ed. Gould, R. F.) 223–230 (American Chemical Society, 1969).Bruckenstein, S. & Comeau, J. Electrochemical mass spectrometry. Part 1. Preliminary studies of propane oxidation on platinum. J. Chem. Soc. Faraday Trans. 91, 285–292 (1973).
Google Scholar 
Barger, H. J. Jr & Savitz, M. L. Chemical identification of adsorbed species in fuel cell reactions: I. propane oxidation. J. Electrochem. Soc. 115, 686–690 (1968).Article 
CAS 

Google Scholar 
Bruckenstein, S., Reidhammer, T. M. & Jureviciute, I. Electrochemical mass spectrometric study of 2-methyl-propane adsorbates formed at platinum in phosphoric acid at 105 °C. J. Electroanal. Chem. 552, 35–43 (2003).Article 
CAS 

Google Scholar 
Solis, V., Castro Luna, A., Triaca, W. E. & Arvfa, A. J. The electrosorption and the potentiodynamic electrooxidation of ethane on platinum at different temperatures. J. Electrochem. Soc. 128, 2115–2122 (1981).Article 
CAS 

Google Scholar 
Bakshi, H. B., Lucky, C., Chen, H. S. & Schreier, M. Electrocatalytic scission of unactivated C(sp3)–C(sp3) bonds through real-time manipulation of surface-bound intermediates. J. Am. Chem. Soc. 145, 13742–13749 (2023).Article 
CAS 
PubMed 

Google Scholar 
Trimarco, D. B. et al. Enabling real-time detection of electrochemical desorption phenomena with sub-monolayer sensitivity. Electrochim. Acta 268, 520–530 (2018).Article 
CAS 

Google Scholar 
Baltruschat, H. Differential electrochemical mass spectrometry. J. Am. Soc. Mass Spectrom. 15, 1693–1706 (2004).Article 
CAS 
PubMed 

Google Scholar 
Boyd, M. J. et al. Electro-oxidation of methane on platinum under ambient conditions. ACS Catal. 9, 7578–7587 (2019).Article 
CAS 

Google Scholar 
Gurses, S. M. & Kronawitter, C. X. Electrochemistry of the interaction of methane with platinum at room temperature investigated through operando FTIR spectroscopy and voltammetry. J. Phys. Chem. C 125, 2944–2955 (2021).Article 
CAS 

Google Scholar 
López-Cudero, A., Cuesta, A. & Gutiérrez, C. Potential dependence of the saturation CO coverage of Pt electrodes: the origin of the pre-peak in CO-stripping voltammograms. Part 1: Pt(111). J. Electroanal. Chem. 579, 1–12 (2005).Article 

Google Scholar 
Cuesta, A. et al. Potential dependence of the saturation CO coverage of Pt electrodes: the origin of the pre-peak in CO-stripping voltammograms. Part 3: Pt(poly). J. Electroanal. Chem. 586, 184–195 (2006).Article 
CAS 

Google Scholar 
Housmans, T. H. M., Hermse, C. G. M. & Koper, M. T. M. CO oxidation on stepped single crystal electrodes: a dynamic Monte Carlo study. J. Electroanal. Chem. 607, 69–82 (2007).Article 
CAS 

Google Scholar 
Voglis, C. & Lagaris, I. E. A rectangular trust region dogleg approach for unconstrained and bound constrained nonlinear optimization. In WSEAS International Conference on Applied Mathematics, Vol. 7 (eds Mastorakis, N., Mladenov, V., Gorla, R.) (World Scientific and Engineering Academy and Society, 2004).Horányi, G. On the adsorption of organic compounds on platinized platinum electrodes. J. Electroanal. Chem. 51, 163–178 (1974).Article 

Google Scholar 
Flannery, R. J. & Walker, D. C. in Hydrocarbon Fuel Cell Technology (ed. Baker, B. S.) 335–348 (Academic Press, 1965).Ojha, K., Arulmozhi, N., Aranzales, D. & Koper, M. T. M. Double layer at the Pt(111)–aqueous electrolyte interface: potential of zero charge and anomalous Gouy–Chapman screening. Angew. Chem. Int. Ed. 59, 711 (2020).Article 
CAS 

Google Scholar 
Piersma, B. J. in Electrosorption (ed. Gileadi, E.) 19–49 (Plenum Press, 1967).Lucky, C. & Schreier, M. Mind the interface: the role of adsorption in electrocatalysis. ACS Nano https://doi.org/10.1021/acsnano.3c09523 (2024).Article 
PubMed 

Google Scholar 
Beltowska-Brzezinska, M., Luczak, T., Baltruschat, H. & Müller, U. Propene oxidation and hydrogenation on a porous platinum electrode in acidic solution. J. Phys. Chem. B 107, 4793–4800 (2003).Article 
CAS 

Google Scholar 
Gootzen, J. F. E., Wonders, A. H., Visscher, W. & Van Veen, J. A. R. Adsorption of C3 alcohols, 1-butanol, and ethene on platinized platinum as studied with FTIRS and DEMS. Langmuir 13, 1659–1667 (1997).Article 
CAS 

Google Scholar 
Lucky, C., Fuller, L. & Schreier, M. Determining the potential-dependent identity of methane adsorbates at Pt electrodes using EC-MS. Catal. Sci. Technol. 14, 353–361 (2024).Article 
CAS 

Google Scholar 
Niedrach, L. W. Galvanostatic and volumetric studies of hydrocarbons adsorbed on fuel cell anodes. J. Electrochem. Soc. 111, 1309–1317 (1964).Article 
CAS 

Google Scholar 
Giner, J. Electrochemical reduction of CO2 on platinum electrodes in acid solutions. Electrochim. Acta 8, 857–865 (1963).Article 
CAS 

Google Scholar 
Schmiemann, U., Müller, U. & Baltruschat, H. The influence of the surface structure on the adsorption of ethene, ethanol and cyclohexene as studied by DEMS. Electrochim. Acta 40, 99–107 (1995).Article 
CAS 

Google Scholar 
Beltowska-Brzezinska, M., Luczak, T., Maczka, M., Baltruschat, H. & Müller, U. Ethyne oxidation and hydrogenation on porous Pt electrode in acidic solution. J. Electroanal. Chem. 519, 101–110 (2002).Article 
CAS 

Google Scholar 
Arenz, M. et al. The effect of the particle size on the kinetics of CO electrooxidation on high surface area Pt catalysts. J. Am. Chem. Soc. 127, 6819–6829 (2005).Article 
CAS 
PubMed 

Google Scholar 
Yan, Y. G. et al. Study of CO oxidation on polycrystalline Pt electrodes in acidic solution by ATR-SEIRAS. J. Phys. Chem. C 115, 16378–16388 (2011).Article 
CAS 

Google Scholar 
Löffler, T. & Baltruschat, H. Temperature dependent formation of multiple adsorption states from ethene at polycrystalline Pt and Pt(111) electrodes studied by differential electrochemical mass spectrometry. J. Electroanal. Chem. 554–555, 333–344 (2003).Article 

Google Scholar 
Gopeesingh, J. et al. Resonance-promoted formic acid oxidation via dynamic electrocatalytic modulation. ACS Catal. 10, 9932–9942 (2020).Article 
CAS 

Google Scholar 
Timoshenko, J. et al. Steering the structure and selectivity of CO2 electroreduction catalysts by potential pulses. Nat. Catal. 5, 259–267 (2022).Article 
CAS 

Google Scholar 
Casebolt, R., Levine, K., Suntivich, J. & Hanrath, T. Pulse check: potential opportunities in pulsed electrochemical CO2 reduction. Joule 5, 1987–2026 (2021).Article 
CAS 

Google Scholar 
Chen, W. et al. Pulse potential mediated selectivity for the electrocatalytic oxidation of glycerol to glyceric acid. Nat. Commun. 15, 2420 (2024).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Blanco, D. E., Lee, B. & Modestino, M. A. Optimizing organic electrosynthesis through controlled voltage dosing and artificial intelligence. Proc. Natl Acad. Sci. USA 116, 17683–17689 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lee, C. W., Cho, N. H., Nam, K. T., Hwang, Y. J. & Min, B. K. Cyclic two-step electrolysis for stable electrochemical conversion of carbon dioxide to formate. Nat. Commun. 10, 3919 (2019).Kim, D., Zhou, C., Zhang, M. & Cargnello, M. Voltage cycling process for the electroconversion of biomass-derived polyols. Proc. Natl Acad. Sci. USA 118, e2113382118 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fedkiw, P. S., Traynelis, C. L. & Wang, S.-R. Pulsed-potential oxidation of methanol. J. Electrochem. Soc. 135, 2459–2465 (1988).Article 
CAS 

Google Scholar 
Adžić, R. R., Popov, K. I. & Pamić, M. A. Acceleration of electrocatalytic reactions by pulsation of potential: oxidation of formic acid on Pt and Pt/Pbads electrodes. Electrochim. Acta 23, 1191–1196 (1978).Article 

Google Scholar 
Ghumman, A. & Pickup, P. G. Efficient electrochemical oxidation of ethanol to carbon dioxide in a fuel cell at ambient temperature. J. Power Sources 179, 280–285 (2008).Article 
CAS 

Google Scholar 
Gasteiger, H. A., Markovic, N. M. & Ross, P. N. Electrooxidation of CO and H2/CO mixtures on a well-characterized Pt3Sn electrode surface. J. Phys. Chem. 99, 8945–8949 (1995).Article 
CAS 

Google Scholar 
Lin, W. F., Iwasita, T. & Vielstich, W. Catalysis of CO electrooxidation at Pt, Ru, and PtRu alloy. An in situ FTIR study. J. Phys. Chem. B 103, 3250–3257 (1999).Article 
CAS 

Google Scholar 
Stamenković, V. R. et al. Surface chemistry on bimetallic alloy surfaces: adsorption of anions and oxidation of CO on Pt3Sn(111). J. Am. Chem. Soc. 125, 2736–2745 (2003).Article 
PubMed 

Google Scholar 
Huang, H., Blackman, O. F., Celorrio, V. & Russell, A. E. Isolating the contributions of surface Sn atoms in the bifunctional behaviour of PtSn CO oxidation electrocatalysts. Electrochim. Acta 390, 138811 (2021).Article 
CAS 

Google Scholar 
Dupont, C., Jugnet, Y. & Loffreda, D. Theoretical evidence of PtSn alloy efficiency for CO oxidation. J. Am. Chem. Soc. 128, 9129–9136 (2006).Article 
CAS 
PubMed 

Google Scholar 
Almithn, A. & Hibbitts, D. Comparing rate and mechanism of ethane hydrogenolysis on transition metal catalysts. J. Phys. Chem. C 123, 5421–5432 (2019).Huynh, T. T., Dang, N. N. & Pham, H. Q. Bimetallic PtIr nanoalloy on TiO2-based solid solution oxide with enhanced oxygen reduction and ethanol electro-oxidation performance in direct ethanol fuel cells. Catal. Sci. Technol. 11, 1571–1579 (2021).Article 
CAS 

Google Scholar 
Dang, Q. et al. Iridium metallene oxide for acidic oxygen evolution catalysis. Nat. Commun. 12, 6007 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Feltham, A. M. & Spiro, M. Platinized platinum electrodes. Chem. Rev. 71, 177–193 (1971).Article 
CAS 

Google Scholar 
Herrero, E., Buller, L. J. & Abruña, H. D. Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. Chem. Rev. 101, 1897–1930 (2001).Article 
CAS 
PubMed 

Google Scholar 
Lucky, C., Jiang, S., Shih, C.-R., Zavala, V. M. & Schreier, M. EC-MS dataset of electrocatalytic transformations of butane on Pt. Zenodo https://doi.org/10.5281/zenodo.12801616 (2024).

Hot Topics

Related Articles