Challenges and solutions to the scale-up of porous materials

Wright, P. A. Microporous Framework Solids. (Royal Society of Chemistry, 2008).Bennett, T. D., Coudert, F.-X., James, S. L. & Cooper, A. I. The changing state of porous materials. Nat. Mater. 20, 1179–1187 (2021).Article 
CAS 
PubMed 

Google Scholar 
Davis, M. E. Ordered porous materials for emerging applications. Nature 417, 813–821 (2002).Article 
CAS 
PubMed 

Google Scholar 
Zhang, H., Samsudin, I. B., Jaenicke, S. & Chuah, G.-K. Zeolites in catalysis: sustainable synthesis and its impact on properties and applications. Catal. Sci. Technol. 12, 6024–6039 (2022).Article 
CAS 

Google Scholar 
Siegelman, R. L., Kim, E. J. & Long, J. R. Porous materials for carbon dioxide separations. Nat. Mater. 20, 1060–1072 (2021).Article 
CAS 
PubMed 

Google Scholar 
Adil, K. et al. Gas/vapour separation using ultra-microporous metal–organic frameworks: insights into the structure/separation relationship. Chem. Soc. Rev. 46, 3402–3430 (2017).Article 
CAS 
PubMed 

Google Scholar 
Li, B., Wen, H.-M., Zhou, W. & Chen, B. Porous metal–organic frameworks for gas storage and separation: what, how, and why? J. Phys. Chem. Lett. 5, 3468–3479 (2014).Article 
CAS 
PubMed 

Google Scholar 
Nguyen, T. T., Lin, J.-B., Shimizu, G. K. & Rajendran, A. Separation of CO2 and N2 on a hydrophobic metal organic framework CALF-20. Chem. Eng. J. 442, 136263 (2022).Article 
CAS 

Google Scholar 
Wang, C., Liu, D. & Lin, W. Metal–organic frameworks as a tunable platform for designing functional molecular materials. J. Am. Chem. Soc. 135, 13222–13234 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Olorunyomi, J. F., Singh, R., Nasa, Z., Caruso, R. A. & Doherty, C. M. Micro-scaling metal-organic framework films through direct laser writing for chemical sensing. Adv. Sens. Res. 2, 2300051 (2023).Article 

Google Scholar 
Hendon, C. H., Rieth, A. J., Korzyński, M. D. & Dincă, M. Grand challenges and future opportunities for metal–organic frameworks. ACS Cent. Sci. 3, 554–563 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
iXamena, F. X. L. & Gascon, J. Metal Organic Frameworks as Heterogeneous Catalysts. (Royal Society of Chemistry, 2013).Olorunyomi, J. F. et al. Simultaneous enhancement of electrical conductivity and porosity of a metal–organic framework toward thermoelectric applications. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202403644 (2024).Katz, M. J. et al. Simple and compelling biomimetic metal–organic framework catalyst for the degradation of nerve agent simulants. Angew. Chem. 126, 507–511 (2014).Article 

Google Scholar 
Horcajada, P. et al. Metal–organic frameworks as efficient materials for drug delivery. Angew. Chem. Int. Ed. 45, 5974–5978 (2006).Article 
CAS 

Google Scholar 
Horcajada, P. et al. Flexible porous metal-organic frameworks for a controlled drug delivery. J. Am. Chem. Soc. 130, 6774–6780 (2008).Article 
CAS 
PubMed 

Google Scholar 
Ma, X. et al. How defects impact the in vitro behavior of iron carboxylate MOF nanoparticles. Chem. Mater. 36, 167–182 (2024).Article 
CAS 

Google Scholar 
Inukai, M. et al. Encapsulating mobile proton carriers into structural defects in coordination polymer crystals: high anhydrous proton conduction and fuel cell application. J. Am. Chem. Soc. 138, 8505–8511 (2016).Article 
CAS 
PubMed 

Google Scholar 
Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 341, 1230444 (2013).Article 
PubMed 

Google Scholar 
Yusuf, V. F., Malek, N. I. & Kailasa, S. K. Review on metal-organic framework classification, synthetic approaches, and influencing factors: applications in energy, drug delivery, and wastewater treatment. ACS Omega 7, 44507–44531 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Slater, A. G. & Cooper, A. I. Function-led design of new porous materials. Science 348, aaa8075 (2015).Article 
PubMed 

Google Scholar 
Rowsell, J. L. C. & Yaghi, O. M. Metal–organic frameworks: a new class of porous materials. Microporous Mesoporous Mater. 73, 3–14 (2004).Article 
CAS 

Google Scholar 
Fajula, F., Galarneau, A. & Renzo, F. D. Advanced porous materials: new developments and emerging trends. Microporous Mesoporous Mater. 82, 227–239 (2005).Article 
CAS 

Google Scholar 
National Academies of Sciences et al. Reproducibility and Replicability in Science. (The National Academies Press, 2019). https://doi.org/10.17226/25303.Pérez-Botella, E., Valencia, S. & Rey, F. Zeolites in adsorption processes: state of the art and future prospects. Chem. Rev. 122, 17647–17695 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Parvulescu, A.-N. & Maurer, S. Toward sustainability in zeolite manufacturing: an industry perspective. Front. Chem. 10, 1050363 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Grimaldi, F., Ramirez, H., Lutz, C. & Lettieri, P. Intensified production of zeolite A: life cycle assessment of a continuous flow pilot plant and comparison with a conventional batch plant. J. Ind. Ecol. 25, 1617–1630 (2021).Article 
CAS 

Google Scholar 
Anh, L. K. & Long, N. Q. Ion-exchanged commercial-zeolites for O2 production and CO2 capture by swing adsorption technology: a brief review. Int. J. Environ. Sci. Technol. 1–14 (2024).Wu, Q., Ma, Y., Wang, S., Meng, X. & Xiao, F.-S. 110th Anniversary: sustainable synthesis of zeolites: from fundamental research to industrial production. Ind. Eng. Chem. Res. 58, 11653–11658 (2019). The paper summarises the sustainable pathways for the synthesis and industrial-scale production of zeolites while highlighting significant challenges and future direction.Article 
CAS 

Google Scholar 
Mallette, A. J., Seo, S. & Rimer, J. D. Synthesis strategies and design principles for nanosized and hierarchical zeolites. Nat. Synth. 1, 521–534 (2022). The paper highlights and details the synthetic pathways used in preparing zeolitic materials and the role of computational analysis that will facilitate a move away from trial and error approaches used in synthesising zeolites.Article 

Google Scholar 
Czuma, N., Casanova, I., Baran, P., Szczurowski, J. & Zarębska, K. CO2 sorption and regeneration properties of fly ash zeolites synthesized with the use of differentiated methods. Sci. Rep. 10, 1825 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cundy, C. S. & Cox, P. A. The hydrothermal synthesis of zeolites:  history and development from the earliest days to the present time. Chem. Rev. 103, 663–702 (2003).Article 
CAS 
PubMed 

Google Scholar 
Li, P., Ding, T., Liu, L. & Xiong, G. Investigation on phase transformation mechanism of zeolite NaY under alkaline hydrothermal conditions. Mater. Charact. 86, 221–231 (2013).Article 
CAS 

Google Scholar 
Ren, B., Sun, J. & Bai, S. Phase transformation and morphology control of zeolite LZ-277 with alkaline media in Na2O–Al2O3–SiO2–H2O system. Microporous Mesoporous Mater. 201, 228–233 (2015).Article 
CAS 

Google Scholar 
Do, M. H. et al. Zeolite growth by synergy between solution-mediated and solid-phase transformations. J. Mater. Chem. A 2, 14360–14370 (2014).Article 
CAS 

Google Scholar 
He, Y., Tang, S., Yin, S. & Li, S. Research progress on green synthesis of various high-purity zeolites from natural material-kaolin. J. Clean. Prod. 306, 127248 (2021).Article 
CAS 

Google Scholar 
Ren, L. et al. Designed copper–amine complex as an efficient template for one-pot synthesis of Cu-SSZ-13 zeolite with excellent activity for selective catalytic reduction of NOx by NH3. Chem. Commun. 47, 9789–9791 (2011).Article 
CAS 

Google Scholar 
Wang, Y. et al. Seed-directed and organotemplate-free synthesis of TON zeolite. Catal. Today 226, 103–108 (2014).Article 
CAS 

Google Scholar 
Awala, H. et al. Template-free nanosized faujasite-type zeolites. Nat. Mater. 14, 447–451 (2015).Article 
CAS 
PubMed 

Google Scholar 
Wang, Z. et al. Tailor-made nanoseeds for the synthesis of zeolites with nanosized dimensions. Cryst. Growth Des. 23, 6450–6460 (2023).Article 
CAS 

Google Scholar 
Davis, M. E. Zeolites from a materials chemistry perspective. Chem. Mater. 26, 239–245 (2014).Article 
CAS 

Google Scholar 
Bai, P. et al. Discovery of optimal zeolites for challenging separations and chemical transformations using predictive materials modeling. Nat. Commun. 6, 5912 (2015).Article 
CAS 
PubMed 

Google Scholar 
Li, X. et al. Machine learning-assisted crystal engineering of a zeolite. Nat. Commun. 14, 3152 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Roth, W. J. et al. A family of zeolites with controlled pore size prepared using a top-down method. Nat. Chem. 5, 628–633 (2013).Article 
CAS 
PubMed 

Google Scholar 
Corma, A., Rey, F., Rius, J., Sabater, M. J. & Valencia, S. Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites. Nature 431, 287–290 (2004).Article 
CAS 
PubMed 

Google Scholar 
Grand, J. et al. One-pot synthesis of silanol-free nanosized MFI zeolite. Nat. Mater. 16, 1010–1015 (2017).Article 
CAS 
PubMed 

Google Scholar 
Wang, Y., Tong, C., Liu, Q., Han, R. & Liu, C. Intergrowth zeolites, synthesis, characterization, and catalysis. Chem. Rev. 123, 11664–11721 (2023).Article 
CAS 
PubMed 

Google Scholar 
Chen, X. et al. Research progress on synthesis of zeolites from coal fly ash and environmental applications. Front. Environ. Sci. Eng. 17, 149 (2023).Article 
CAS 

Google Scholar 
Zhang, Y. et al. Utilization of NaP zeolite synthesized with different silicon species and NaAlO2 from coal fly ash for the adsorption of Rhodamine B. J. Hazard. Mater. 415, 125627 (2021).Article 
CAS 
PubMed 

Google Scholar 
Kasneryk, V. et al. Vapour-phase-transport rearrangement technique for the synthesis of new zeolites. Nat. Commun. 10, 5129 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Mendoza-Castro, M. J., Qie, Z., Fan, X., Linares, N. & García-Martínez, J. Tunable hybrid zeolites prepared by partial interconversion. Nat. Commun. 14, 1256 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fan, W., Zhang, X., Kang, Z., Liu, X. & Sun, D. Isoreticular chemistry within metal–organic frameworks for gas storage and separation. Coord. Chem. Rev. 443, 213968 (2021).Article 
CAS 

Google Scholar 
Jia, T., Gu, Y. & Li, F. Progress and potential of metal-organic frameworks (MOFs) for gas storage and separation: a review. J. Environ. Chem. Eng. 10, 108300 (2022).Article 
CAS 

Google Scholar 
Li, H. et al. Recent advances in gas storage and separation using metal–organic frameworks. Mater. Today 21, 108–121 (2018).Article 
CAS 

Google Scholar 
Sutton, A. L., Melag, L., Sadiq, M. M. & Hill, M. R. Capture, storage, and release of oxygen by metal–organic frameworks (MOFs). Angew. Chem. Int. Ed. 61, e202208305 (2022).Article 
CAS 

Google Scholar 
Nazari, M. et al. Metal-organic-framework-coated optical fibers as light-triggered drug delivery vehicles. Adv. Funct. Mater. 26, 3244–3249 (2016).Article 
CAS 

Google Scholar 
Lawson, H. D., Walton, S. P. & Chan, C. Metal-organic frameworks for drug delivery: a design perspective. ACS Appl. Mater. Interfaces 13, 7004–7020 (2021).Article 
CAS 
PubMed 

Google Scholar 
Moharramnejad, M. et al. MOF as nanoscale drug delivery devices: synthesis and recent progress in biomedical applications. J. Drug Deliv. Sci. Technol. 81, 104285 (2023).Article 
CAS 

Google Scholar 
Mallakpour, S., Nikkhoo, E. & Hussain, C. M. Application of MOF materials as drug delivery systems for cancer therapy and dermal treatment. Coord. Chem. Rev. 451, 214262 (2022).Article 
CAS 

Google Scholar 
Li, D., Xu, H.-Q., Jiao, L. & Jiang, H.-L. Metal-organic frameworks for catalysis: state of the art, challenges, and opportunities. EnergyChem 1, 100005 (2019).Article 
CAS 

Google Scholar 
Liu, M., Wu, J. & Hou, H. Metal–organic framework (MOF)-based materials as heterogeneous catalysts for C−H bond activation. Chemistry 25, 2935–2948 (2019).Article 
CAS 
PubMed 

Google Scholar 
Goetjen, T. A. et al. Metal–organic framework (MOF) materials as polymerization catalysts: a review and recent advances. Chem. Commun. 56, 10409–10418 (2020).Article 
CAS 

Google Scholar 
Bergman, R. G. & Danheiser, R. L. Reproducibility in chemical research. Angew. Chem. Int. Ed. Engl. 55, 12548–12549 (2016).Article 
CAS 
PubMed 

Google Scholar 
Baker, M. 1, 500 scientists lift the lid on reproducibility. Nature 533, 452–454 (2016).Article 
CAS 
PubMed 

Google Scholar 
Boström, H. L. B. et al. How reproducible is the synthesis of Zr–porphyrin metal–organic frameworks? An interlaboratory study. Adv. Mater. 36, 2304832 (2024). This paper describes the first-ever interlaboratory study of the synthetic reproducibility of two MOFs, the results highlight the need to systematically describe and account for synthetic variables not commonly reported.Article 

Google Scholar 
Park, J., Howe, J. D. & Sholl, D. S. How reproducible are isotherm measurements in metal–organic frameworks? Chem. Mater. 29, 10487–10495 (2017).Article 
CAS 

Google Scholar 
Han, R., Walton, K. S. & Sholl, D. S. Does chemical engineering research have a reproducibility problem? Annu. Rev. Chem. Biomol. Eng. 10, 43–57 (2019).Article 
CAS 
PubMed 

Google Scholar 
Rubio-Martinez, M. et al. New synthetic routes towards MOF production at scale. Chem. Soc. Rev. 46, 3453–3480 (2017).Article 
CAS 
PubMed 

Google Scholar 
Johnson, T. et al. Improvements to the production of ZIF-94; a case study in MOF scale-up. Green. Chem. 21, 5665–5670 (2019).Article 
CAS 

Google Scholar 
McDonald, T. M. et al. Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal–organic framework mmen-Mg2 (dobpdc). J. Am. Chem. Soc. 134, 7056–7065 (2012).Article 
CAS 
PubMed 

Google Scholar 
Permyakova, A. et al. Synthesis optimization, shaping, and heat reallocation evaluation of the hydrophilic metal–organic framework MIL-160(Al). ChemSusChem. 10, 1419–1426 (2017).Article 
CAS 
PubMed 

Google Scholar 
Lenzen, D. et al. Scalable green synthesis and full-scale test of the metal–organic framework CAU-10-H for use in adsorption-driven chillers. Adv. Mater. 30, 1705869 (2018).Article 

Google Scholar 
Lin, J.-B. et al. A scalable metal-organic framework as a durable physisorbent for carbon dioxide capture. Science 374, 1464–1469 (2021). The commercial scale-up of CALF-20, an adsorbent for carbon flue gas capture, is remarkably significant in demonstrating the potential impact the scale-up of MOFs can have on industry and the broader community.Article 
CAS 
PubMed 

Google Scholar 
Nitta, C. Advanced Sorbent Materials with BASF for Carbon Capture Market. Preprint at svanteinc.com (2023).Chakraborty, D., Yurdusen, A., Mouchaham, G., Nouar, F. & Serre, C. Large-Scale Production of Metal–Organic Frameworks. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202309089 (2023).Dhakshinamoorthy, A., Li, Z. & Garcia, H. Catalysis and photocatalysis by metal organic frameworks. Chem. Soc. Rev. 47, 8134–8172 (2018).Article 
CAS 
PubMed 

Google Scholar 
Sannes, D. K., Øien-Ødegaard, S., Aunan, E., Nova, A. & Olsbye, U. Quantification of linker defects in UiO-type metal–organic frameworks. Chem. Mater. 35, 3793–3800 (2023).Article 
CAS 

Google Scholar 
Yin, J. et al. Molecular identification and quantification of defect sites in metal-organic frameworks with NMR probe molecules. Nat. Commun. 13, 5112 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sadiq, M. M. et al. A pilot-scale demonstration of mobile direct air capture using metal-organic frameworks. Adv. Sustain. Syst. 4, 2000101 (2020).Article 
CAS 

Google Scholar 
Wang, T. C. et al. Surviving under pressure: the role of solvent, crystal size, and morphology during pelletization of metal–organic frameworks. ACS Appl. Mater. Interfaces 13, 52106–52112 (2021).Article 
CAS 
PubMed 

Google Scholar 
Zheng, J. et al. Shaping of ultrahigh-loading MOF pellet with a strongly anti-tearing binder for gas separation and storage. Chem. Eng. J. 354, 1075–1082 (2018).Article 
CAS 

Google Scholar 
Zadehahmadi, F. et al. Removal of metals from water using MOF-based composite adsorbents. Environ. Sci. Water Res. Technol. 9, 1305–1330 (2023).Article 
CAS 

Google Scholar 
Ngo, T.-D. Introduction to Composite Materials. in (ed Ngo, T.-D.) Ch. 1 (IntechOpen, 2020) https://doi.org/10.5772/intechopen.91285.Ulrich, K. T. & Eppinger, S. D. Product Design and Development. (McGraw-Hill/Irwin, 2004).Sadiq, M. M., Rubio-Martinez, M., Zadehahmadi, F., Suzuki, K. & Hill, M. R. Magnetic framework composites for low concentration methane capture. Ind. Eng. Chem. Res. 57, 6040–6047 (2018).Article 
CAS 

Google Scholar 
Melag, L. et al. Performance evaluation of CuBTC composites for room temperature oxygen storage. RSC Adv. 10, 40960–40968 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Melag, L. et al. Efficient delivery of oxygen via magnetic framework composites. J. Mater. Chem. A 7, 3790–3796 (2019).Article 
CAS 

Google Scholar 
Tao, Y., Huang, G., Li, H. & Hill, M. R. Magnetic metal–organic framework composites: solvent-free synthesis and regeneration driven by localized magnetic induction heat. ACS Sustain. ACS Sustain. Chem. Eng. 7, 13627–13632 (2019).Article 
CAS 

Google Scholar 
He, B. et al. Continuous flow synthesis of a Zr magnetic framework composite for post-combustion CO2 capture. Chemistry 25, 13184–13188 (2019).Article 
CAS 
PubMed 

Google Scholar 
He, B., Macreadie, L. K., Gardiner, J., Telfer, S. G. & Hill, M. R. In situ investigation of multicomponent MOF crystallization during rapid continuous flow synthesis. ACS Appl. Mater. Interfaces 13, 54284–54293 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, H. et al. Magnetic induction framework synthesis: a general route to the controlled growth of metal–organic frameworks. Chem. Mater. 29, 6186–6190 (2017).Article 
CAS 

Google Scholar 
Sadiq, M. M. et al. Engineered porous nanocomposites that deliver remarkably low carbon capture energy costs. Cell Rep. Phys. Sci. 1, 100070 (2020).Article 

Google Scholar 
Mahajan, R. & Koros, W. J. Factors controlling successful formation of mixed-matrix gas separation materials. Ind. Eng. Chem. Res. 39, 2692–2696 (2000).Article 
CAS 

Google Scholar 
Cheng, Y., Wang, Z. & Zhao, D. Mixed matrix membranes for natural gas upgrading: current status and opportunities. Ind. Eng. Chem. Res. 57, 4139–4169 (2018).Article 
CAS 

Google Scholar 
Thompson, J. A., Chapman, K. W., Koros, W. J., Jones, C. W. & Nair, S. Sonication-induced Ostwald ripening of ZIF-8 nanoparticles and formation of ZIF-8/polymer composite membranes. Microporous Mesoporous Mater. 158, 292–299 (2012).Article 
CAS 

Google Scholar 
Zhang, C. et al. Highly scalable ZIF-based mixed-matrix hollow fiber membranes for advanced hydrocarbon separations. AIChE J. 60, 2625–2635 (2014).Article 
CAS 

Google Scholar 
Teesdale, J. J., Lee, M., Lu, R. & Smith, Z. P. Uncertainty in composite membranes: from defect engineering to film processing. Process. J. Am. Chem. Soc. 145, 830–840 (2023).Article 
CAS 
PubMed 

Google Scholar 
Lau, C. H. et al. Ending aging in super glassy polymer membranes. Angew. Chem. Int. Ed. 53, 5322–5326 (2014). This paper addresses the issue of polymer chain relaxation and aging in a permeable polymeric membrane while simultaneously achieving a drastic enhancement in gas permeabilities through the incorporation of PAF-1 particles.Article 
CAS 

Google Scholar 
Lau, C. H. et al. Gas-separation membranes loaded with porous aromatic frameworks that improve with age. Angew. Chem. Int. Ed. 54, 2669–2673 (2015).Article 
CAS 

Google Scholar 
Smith, S. J. D. et al. Physical aging in glassy mixed matrix membranes; tuning particle interaction for mechanically robust nanocomposite films. J. Mater. Chem. A 4, 10627–10634 (2016).Article 
CAS 

Google Scholar 
Cheng, Y. et al. Enhanced polymer crystallinity in mixed-matrix membranes induced by metal–organic framework nanosheets for efficient CO2 capture. ACS Appl. Mater. Interfaces 10, 43095–43103 (2018).Article 
CAS 
PubMed 

Google Scholar 
Smith, S. J. D. et al. Highly permeable thermally rearranged mixed matrix membranes (TR-MMM). J. Memb. Sci. 585, 260–270 (2019).Article 
CAS 

Google Scholar 
Hou, R. et al. Greatly enhanced gas selectivity in mixed-matrix membranes through size-controlled hyper-cross-linked polymer additives. Ind. Eng. Chem. Res. 59, 13773–13782 (2020).Article 
CAS 

Google Scholar 
Cheng, X. et al. Building additional passageways in polyamide membranes with hydrostable metal organic frameworks to recycle and remove organic solutes from various solvents. ACS Appl. Mater. Interfaces 9, 38877–38886 (2017).Article 
CAS 
PubMed 

Google Scholar 
Husain, S. & Koros, W. J. Mixed matrix hollow fiber membranes made with modified HSSZ-13 zeolite in polyetherimide polymer matrix for gas separation. J. Memb. Sci. 288, 195–207 (2007).Article 
CAS 

Google Scholar 
Dai, Y., Johnson, J. R., Karvan, O., Sholl, D. S. & Koros, W. J. Ultem®/ZIF-8 mixed matrix hollow fiber membranes for CO2/N2. Sep. J. Memb. Sci. 401–402, 76–82 (2012).Article 

Google Scholar 
Ismail, A. F., Kusworo, T. D. & Mustafa, A. Enhanced gas permeation performance of polyethersulfone mixed matrix hollow fiber membranes using novel Dynasylan Ameo silane agent. J. Memb. Sci. 319, 306–312 (2008).Article 
CAS 

Google Scholar 
Mahdavi, H., Smith, S. J. D., Mulet, X. & Hill, M. R. Practical considerations in the design and use of porous liquids. Mater. Horiz. 9, 1577–1601 (2022).Article 
CAS 
PubMed 

Google Scholar 
Mahdavi, H. et al. Accelerated systematic investigation of solvents suitability for type II/III porous liquids. ACS. Mater. Lett. 5, 549–557 (2023).CAS 

Google Scholar 
Mahdavi, H. et al. Underlying solvent-based factors that influence permanent porosity in porous liquids. Nano Res. 15, 3533–3538 (2022).Article 
CAS 

Google Scholar 
Mahdavi, H. et al. Underlying polar and nonpolar modification MOF-based factors that influence permanent porosity in porous liquids. ACS Appl. Mater. Interfaces 14, 23392–23399 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mahdavi, H., Sadiq, M. M., Smith, S. J. D., Mulet, X. & Hill, M. R. Underlying potential evaluation of the real-process applications of magnetic porous liquids. J. Mater. Chem. A 11, 16846–16853 (2023). The paper introduces a novel porous liquid with high regeneration ability, ensuring reusability, and high productivity while exhibiting one of the lowest regeneration energies observed for any adsorbent.Article 
CAS 

Google Scholar 
Smith, S. J. D. et al. Porous solid inspired hyper-crosslinked polymer liquids with highly efficient regeneration for gas purification. Sci. China Mater. 65, 1937–1942 (2022).Article 
CAS 

Google Scholar 
Weidenthaler, C. Pitfalls in the characterization of nanoporous and nanosized materials. Nanoscale 3, 792–810 (2011).Article 
CAS 
PubMed 

Google Scholar 
Osterrieth, J. W. M. et al. How reproducible are surface areas calculated from the BET equation? Adv. Mater. 34, e2201502 (2022). The paper introduces a software called “BET surface identification” (BETSI), which expands on the well-known Rouquerol criteria and makes an unambiguous BET area assignment possible.Article 
PubMed 

Google Scholar 
Rouquerol, J., Llewellyn, P. & Rouquerol, F. Is the BET equation applicable to microporous adsorbents. Stud. Surf. Sci. Catal. 160, 49–56 (2007).Article 
CAS 

Google Scholar 
Thommes, M. et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051–1069 (2015).Article 
CAS 

Google Scholar 
Rouquerol, J., Rouquerol, F., Llewellyn, P., Maurin, G. & Sing, K. Adsorption by Powders and Porous Solids: Principles, Methodology and Applications. (Academic Press, 2013).De, A., Maliuta, M., Senkovska, I. & Kaskel, S. The dilemma of reproducibility of gating isotherms for flexible MOFs. Langmuir 38, 14073–14083 (2022).Article 
CAS 
PubMed 

Google Scholar 
Bingel, L. W., Chen, A., Agrawal, M. & Sholl, D. S. Experimentally verified alcohol adsorption isotherms in nanoporous materials from literature meta-analysis. J. Chem. Eng. Data 65, 4970–4979 (2020).Article 
CAS 

Google Scholar 
Evans, J. D., Bon, V., Senkovska, I. & Kaskel, S. A universal standard archive file for adsorption data. Langmuir 37, 4222–4226 (2021).Article 
CAS 
PubMed 

Google Scholar 
Ongari, D., Talirz, L., Jablonka, K. M., Siderius, D. W. & Smit, B. Data-driven matching of experimental crystal structures and gas adsorption isotherms of metal–organic frameworks. J. Chem. Eng. Data 67, 1743–1756 (2022).Article 
CAS 

Google Scholar 
Ongari, D., Yakutovich, A. V., Talirz, L. & Smit, B. Building a consistent and reproducible database for adsorption evaluation in covalent–organic frameworks. ACS Cent. Sci. 5, 1663–1675 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bobbitt, N. S. et al. MOFX-DB: an online database of computational adsorption data for nanoporous materials. J. Chem. Eng. Data 68, 483–498 (2023).Article 
CAS 

Google Scholar 
Bae, Y.-S., Yazaydin, A. O. & Snurr, R. Q. Evaluation of the BET method for determining surface areas of MOFs and zeolites that contain ultra-micropores. Langmuir 26, 5475–5483 (2010).Article 
CAS 
PubMed 

Google Scholar 
Ambroz, F., Macdonald, T. J., Martis, V. & Parkin, I. P. Evaluation of the BET Theory for the characterization of meso and microporous MOFs. Small Methods 2, 1800173 (2018).Article 

Google Scholar 
Cai, X. et al. A collection of more than 900 gas mixture adsorption experiments in porous materials from literature meta-analysis. Ind. Eng. Chem. Res. 60, 639–651 (2021).Article 
CAS 

Google Scholar 
Kamat, P. V. Absolute, arbitrary, relative, or normalized scale? How to get the scale right. ACS Energy Lett. 4, 2005–2006 (2019).Article 
CAS 

Google Scholar 
Agrawal, M., Han, R., Herath, D. & Sholl, D. S. Does repeat synthesis in materials chemistry obey a power law? Proc. Natl Acad. Sci. USA 117, 877–882 (2020).Article 
CAS 
PubMed 

Google Scholar 
Broom, D. P. & Hirscher, M. Improving reproducibility in hydrogen storage material research. ChemPhysChem. 22, 2141–2157 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chung, Y. G. et al. Advances, updates, and analytics for the computation-ready, experimental metal–organic framework database: CoRE MOF 2019. J. Chem. Eng. Data 64, 5985–5998 (2019).Article 
CAS 

Google Scholar 
Moghadam, P. Z. et al. Development of a Cambridge Structural Database Subset: a collection of metal–organic frameworks for past, present, and future. Chem. Mater. 29, 2618–2625 (2017). This paper reports the generation and characterization of a comprehensive collection of metal-organic frameworks (MOFs) curated by the Cambridge Crystallographic Data Centre (CCDC), and this collection, updated regularly, provides a unique resource for researchers working with porous materials worldwide.Article 
CAS 

Google Scholar 
Orhan, I. B., Le, T. C., Babarao, R. & Thornton, A. W. Accelerating the prediction of CO2 capture at low partial pressures in metal-organic frameworks using new machine learning descriptors. Commun. Chem. 6, 214 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Orhan, I. B., Daglar, H., Keskin, S., Le, T. C. & Babarao, R. Prediction of O2/N2 selectivity in metal–organic frameworks via high-throughput computational screening and machine learning. ACS Appl. Mater. Interfaces 14, 736–749 (2022).Article 
CAS 
PubMed 

Google Scholar 
Jablonka, K. M., Ongari, D., Moosavi, S. M. & Smit, B. Big-data science in porous materials: materials genomics and machine learning. Chem. Rev. 120, 8066–8129 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yasuda, T., Ookawara, S., Yoshikawa, S. & Matsumoto, H. Machine learning and data-driven characterization framework for porous materials: permeability prediction and channeling defect detection. Chem. Eng. J. 420, 130069 (2021).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles