Transforming cyclopropanes to enamides via σ-C–C bond eliminative borylation

Hall, D. G. Boronic Acids: Preparation and Applications in Organic Synthesis Medicine and Materials (Wiley, 2011).Fyfe, J. W. B. & Watson, A. J. B. Recent developments in organoboron chemistry: old dogs, new tricks. Chem 3, 31–55 (2017).Article 

Google Scholar 
Collins, B. S. L., Wilson, C. M., Myers, E. L. & Aggarwal, V. K. Asymmetric synthesis of secondary and tertiary boronic esters. Angew. Chem. Int. Ed. 56, 11700–11733 (2017).Article 

Google Scholar 
Wang, M. & Shi, Z. Methodologies and strategies for selective borylation of C–Het and C–C bonds. Chem. Rev. 120, 7348–7398 (2020).Article 
PubMed 

Google Scholar 
Bose, S. K. et al. First-row d-block element-catalyzed carbon–boron bond formation and related processes. Chem. Rev. 121, 13238–13341 (2021).Article 
PubMed 

Google Scholar 
Tian, Y.-M., Guo, X.-N., Braunschweig, H., Radius, U. & Marder, T. B. Photoinduced borylation for the synthesis of organoboron compounds: focus review. Chem. Rev. 121, 3561–3597 (2021).Article 
PubMed 

Google Scholar 
Volochnyuk, D. M., Gorlova, A. O. & Grygorenko, O. O. Saturated boronic acids, boronates, and trifluoroborates: an update on their synthetic and medicinal chemistry. Chem. Eur. J. 27, 15277–15326 (2021).Article 
PubMed 

Google Scholar 
Tan, X. & Wang, H. Recent advances in borenium catalysis. Chem. Soc. Rev. 51, 2583–2600 (2022).Article 
PubMed 

Google Scholar 
Mamada, M., Hayakawa, M., Ochi, J. & Hatakeyama, T. Organoboron-based multiple-resonance emitters: synthesis, structure–property correlations, and prospects. Chem. Soc. Rev. 53, 1624–1692 (2024).Article 
PubMed 

Google Scholar 
Mkhalid, I. A. I., Barnard, J. H., Marder, T. B., Murphy, J. M. & Hartwig, J. F. C−H activation for the construction of C−B bonds. Chem. Rev. 110, 890–931 (2010).Article 
PubMed 

Google Scholar 
Hartwig, J. F. Regioselectivity of the borylation of alkanes and arenes. Chem. Soc. Rev. 40, 1992 (2011).Article 
PubMed 

Google Scholar 
Bisht, R. et al. Metal-catalysed C–H bond activation and borylation. Chem. Soc. Rev. 51, 5042–5100 (2022).Article 
PubMed 

Google Scholar 
Yu, I. F., Wilson, J. W. & Hartwig, J. F. Transition-metal-catalyzed silylation and borylation of C–H bonds for the synthesis and functionalization of complex molecules. Chem. Rev. 123, 11619–11663 (2023).Article 
PubMed 

Google Scholar 
Wright, J. S., Scott, P. J. H. & Steel, P. G. Iridium‐catalysed C−H borylation of heteroarenes: balancing steric and electronic regiocontrol. Angew. Chem. Int. Ed. 60, 2796–2821 (2021).Article 

Google Scholar 
Kubota, K., Pang, Y., Miura, A. & Ito, H. Redox reactions of small organic molecules using ball milling and piezoelectric materials. Science 366, 1500–1504 (2019).Article 
ADS 
PubMed 

Google Scholar 
Oeschger, R. et al. Diverse functionalization of strong alkyl C–H bonds by undirected borylation. Science 368, 736–741 (2020).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Cao, Y., Huang, C.& Lu, Q. Photoelectrochemically driven iron-catalysed C(sp3)−H borylation of alkanes. Nat. Synth. https://doi.org/10.1038/s44160-023-00480-7 (2024).Wang, M., Huang, Y., Hu, P. & Terminal, C. (sp3)–H borylation through intermolecular radical sampling. Science 383, 537–544 (2024).Article 
ADS 
PubMed 

Google Scholar 
Ros, A., Fernández, R. & Lassaletta, J. M. Functional group directed C–H borylation. Chem. Soc. Rev. 43, 3229–3243 (2014).Article 
PubMed 

Google Scholar 
Sambiagio, C. et al. A comprehensive overview of directing groups applied in metal-catalysed C–H functionalisation chemistry. Chem. Soc. Rev. 47, 6603–6743 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Prokofjevs, A. & Vedejs, E. N-Directed aliphatic C–H borylation using borenium cation equivalents. J. Am. Chem. Soc. 133, 20056–20059 (2011).Article 
PubMed 
PubMed Central 

Google Scholar 
Légaré, M.-A., Courtemanche, M.-A., Rochette, É. & Fontaine, F.-G. Metal-free catalytic C-H bond activation and borylation of heteroarenes. Science 349, 513–516 (2015).Article 
ADS 
PubMed 

Google Scholar 
Bose, S. K. & Marder, T. B. Metal-free catalytic borylation of carbon-hydrogen bonds – A leap forward in C–H functionalization. Science 349, 473–474 (2015).Article 
ADS 
PubMed 

Google Scholar 
Shu, C., Noble, A. & Aggarwal, V. K. Metal-free photoinduced C(sp3)–H borylation of alkanes. Nature 586, 714–719 (2020).Article 
ADS 
PubMed 

Google Scholar 
Kim, J. H. et al. A radical approach for the selective C–H borylation of azines. Nature 595, 677–683 (2021).Article 
ADS 
PubMed 

Google Scholar 
Lv, J. et al. Metal-free directed sp2-C–H borylation. Nature 575, 336–340 (2019).Article 
ADS 
PubMed 

Google Scholar 
Iqbal, S. A. et al. Acyl‐directed ortho ‐borylation of anilines and C7 borylation of indoles using just BBr3. Angew. Chem. Int. Ed. 58, 15381–15385 (2019).Article 

Google Scholar 
Wang, Z. et al. Metal‐free directed C−H borylation of pyrroles. Angew. Chem. Int. Ed. 60, 8500–8504 (2021).Article 

Google Scholar 
Rej, S. & Chatani, N. Transient imine as a directing group for the metal-free o -C–H borylation of benzaldehydes. J. Am. Chem. Soc. 143, 2920–2929 (2021).Article 
PubMed 

Google Scholar 
Sadek, O. et al. Metal‐free phosphorus‐directed borylation of C(sp2)−H bonds. Angew. Chem. Int. Ed. 61, e202110102 (2022).Article 

Google Scholar 
Zhang, X. et al. Electrophilic C–H borylation of aza[5]helicenes leading to bowl-shaped quasi-[7]circulenes with switchable dynamics. J. Am. Chem. Soc. 144, 22316–22324 (2022).Article 
PubMed 

Google Scholar 
Wang, T. et al. Metal‐free stereoconvergent C−H borylation of enamides. Angew. Chem. Int. Ed. 62, e202313205 (2023).Article 

Google Scholar 
Ashwathappa, P. K. S. et al. Metal-free directed site-selective Csp3-H borylation of saturated cyclic amines. Angew. Chem. Int. Ed. 62, e202309295 (2023).Article 

Google Scholar 
Song, F., Gou, T., Wang, B.-Q. & Shi, Z.-J. Catalytic activations of unstrained C–C bond involving organometallic intermediates. Chem. Soc. Rev. 47, 7078–7115 (2018).Article 
PubMed 

Google Scholar 
Sivaguru, P., Wang, Z., Zanoni, G. & Bi, X. Cleavage of carbon–carbon bonds by radical reactions. Chem. Soc. Rev. 48, 2615–2656 (2019).Article 
PubMed 

Google Scholar 
Xia, Y. & Dong, G. Temporary or removable directing groups enable activation of unstrained C–C bonds. Nat. Rev. Chem. 4, 600–614 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Lutz, M. D. R. & Morandi, B. Metal-catalyzed carbon–carbon bond cleavage of unstrained alcohols. Chem. Rev. 121, 300–326 (2021).Article 
PubMed 

Google Scholar 
Liang, Y.-F. et al. Carbon–carbon bond cleavage for late-stage functionalization. Chem. Rev. 123, 12313–12370 (2023).Article 
PubMed 

Google Scholar 
De Meijere, A., Kozhushkov, S. I. & Schill, H. Three-membered-ring-based molecular architectures. Chem. Rev. 106, 4926–4996 (2006).Article 
PubMed 

Google Scholar 
Chen, D. Y.-K., Pouwer, R. H. & Richard, J.-A. Recent advances in the total synthesis of cyclopropane-containing natural products. Chem. Soc. Rev. 41, 4631 (2012).Article 
PubMed 

Google Scholar 
Ebner, C. & Carreira, E. M. Cyclopropanation strategies in recent total syntheses. Chem. Rev. 117, 11651–11679 (2017).Article 
PubMed 

Google Scholar 
Sokolova, O. O. & Bower, J. F. Selective carbon–carbon bond cleavage of cyclopropylamine derivatives. Chem. Rev. 121, 80–109 (2021).Article 
PubMed 

Google Scholar 
Cohen, Y., Cohen, A. & Marek, I. Creating stereocenters within acyclic systems by C–C bond cleavage of cyclopropanes. Chem. Rev. 121, 140–161 (2021).Article 
PubMed 

Google Scholar 
Liskey, C. W. & Hartwig, J. F. Iridium-catalyzed C–H borylation of cyclopropanes. J. Am. Chem. Soc. 135, 3375–3378 (2013).Article 
PubMed 

Google Scholar 
Miyamura, S. et al. Stereodivergent synthesis of arylcyclopropylamines by sequential C-H borylation and Suzuki–Miyaura coupling. Angew. Chem. Int. Ed. 54, 846–851 (2015).Article 

Google Scholar 
Shi, Y., Yang, Y. & Xu, S. Iridium‐catalyzed enantioselective C(sp3)−H borylation of aminocyclopropanes. Angew. Chem. Int. Ed. 61, e202201463 (2022).Article 
ADS 

Google Scholar 
He, J. et al. Ligand-promoted borylation of C(sp3)‒H bonds with palladium(II) catalysts. Angew. Chem. Int. Ed. 55, 785–789 (2016).Article 
ADS 

Google Scholar 
Kondo, H. et al. σ-Bond hydroboration of cyclopropanes. J. Am. Chem. Soc. 142, 11306–11313 (2020).Article 
PubMed 

Google Scholar 
Wang, Y. et al. Rhodium-catalysed selective C–C bond activation and borylation of cyclopropanes. Chem. Sci. 12, 3599–3607 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Wang, T. et al. Ligand cooperativity enables highly enantioselective C–C σ-bond hydroboration of cyclopropanes. Chem 9, 130–142 (2023).Article 

Google Scholar 
Li, S., Jiao, H., Shu, X.-Z. & Wu, L. Zirconium and hafnium catalyzed C–C single bond hydroboration. Nat. Commun. 15, 1846 (2024).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Stirling, C. J. M. Nucleophilic eliminative ring fission. Chem. Rev. 78, 517–567 (1978).Article 

Google Scholar 
Lyu, H. et al. Modular synthesis of 1,2-azaborines via ring-opening BN-isostere benzannulation. Nat. Chem. 16, 269–276 (2024).Article 
PubMed 

Google Scholar 
Trost, B. M., Cregg, J. J. & Quach, N. Isomerization of N-allyl amides to form geometrically defined di-, tri-, and tetrasubstituted enamides. J. Am. Chem. Soc. 139, 5133–5139 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Molloy, J. J. et al. Boron-enabled geometric isomerization of alkenes via selective energy-transfer catalysis. Science 369, 302–306 (2020).Article 
ADS 
PubMed 

Google Scholar 
Barrett, A. G. M., Seefeld, M. A., White, A. J. P. & Williams, D. J. Convenient asymmetric syntheses of anti -β-amino alcohols. J. Org. Chem. 61, 2677–2685 (1996).Article 
PubMed 

Google Scholar 
Li, J. et al. Metal-free direct deoxygenative borylation of aldehydes and ketones. J. Am. Chem. Soc. 142, 13011–13020 (2020).Article 
PubMed 

Google Scholar 
Fawcett, A. et al. Photoinduced decarboxylative borylation of carboxylic acids. Science 357, 283–286 (2017).Article 
ADS 
PubMed 

Google Scholar 
Yu, Y.-J. et al. Sequential C–F bond functionalizations of trifluoroacetamides and acetates via spin-center shifts. Science 371, 1232–1240 (2021).Article 
ADS 
PubMed 

Google Scholar 
Li, S. et al. Site-fixed hydroboration of terminal and internal alkenes using BX3/iPr2Net. Angew. Chem. Int. Ed. 60, 26238–26245 (2021).Article 

Google Scholar 
Burt, J. et al. Systematics of BX3 and BX2+ complexes (X = F, Cl, Br, I) with neutral diphosphine and diarsine ligands. Inorg. Chem. 55, 8852–8864 (2016).Article 
PubMed 

Google Scholar 
Tanaka, S., Saito, Y., Yamamoto, T. & Hattori, T. Electrophilic borylation of terminal alkenes with BBr3/2,6-disubstituted Pyridines. Org. Lett. 20, 1828–1831 (2018).Article 
PubMed 

Google Scholar 
Vries, T. S. D., Prokofjevs, A. & Vedejs, E. Cationic tricoordinate boron intermediates: Borenium chemistry from the organic perspective. Chem. Rev. 112, 4246–4282 (2012).Article 
PubMed 
PubMed Central 

Google Scholar 
Issaian, A., Tu, K. N. & Blum, S. A. Boron–heteroatom addition reactions via borylative heterocyclization: oxyboration, aminoboration, and thioboration. Acc. Chem. Res. 50, 2598–2609 (2017).Article 
PubMed 

Google Scholar 

Hot Topics

Related Articles