Splicing is dynamically regulated during limb development

Schwab, D. B., Casasa, S. & Moczek, A. P. On the reciprocally causal and constructive nature of developmental plasticity and robustness. Front. Genet. 9, 735 (2018).Article 
CAS 
PubMed 

Google Scholar 
Waddington, C. H. Canalization of development and genetic assimilation of acquired characters. Nature 183(4676), 1654–1655 (1959).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Carroll, S. B. Evo-devo and an expanding evolutionary synthesis: A genetic theory of morphological evolution. Cell 134(1), 25–36 (2008).Article 
CAS 
PubMed 

Google Scholar 
Zeller, R., Lopez-Rios, J. & Zuniga, A. Vertebrate limb bud development: Moving towards integrative analysis of organogenesis. Nat. Rev. Genet. 10(12), 845–858 (2009).Article 
CAS 
PubMed 

Google Scholar 
Allard, P. & Tabin, C. J. Achieving bilateral symmetry during vertebrate limb development. Semin. Cell Dev. Biol. 20(4), 479–484 (2009).Article 
PubMed 

Google Scholar 
Zhu, M. & Tabin, C. J. The role of timing in the development and evolution of the limb. Front. Cell Dev. Biol. 11, 1135519 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Petit, F., Sears, K. E. & Ahituv, N. Limb development: A paradigm of gene regulation. Nat. Rev. Genet. 18(4), 245–258 (2017).Article 
CAS 
PubMed 

Google Scholar 
Gehrke, A. R. & Shubin, N. H. Cis-regulatory programs in the development and evolution of vertebrate paired appendages. Semin. Cell Dev. Biol. 57, 31–39 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sears, K. et al. Timing the developmental origins of mammalian limb diversity. Genesis 56(1), 66 (2018).Article 

Google Scholar 
Cooper, K. L. et al. Patterning and post-patterning modes of evolutionary digit loss in mammals. Nature 511(7507), 41–45 (2014).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wray, G. A. The evolutionary significance of cis-regulatory mutations. Nat. Rev. Genet. 8(3), 206–216 (2007).Article 
CAS 
PubMed 

Google Scholar 
Schneider, I. & Shubin, N. H. The origin of the tetrapod limb: from expeditions to enhancers. Trends Genet. 29(7), 419–426 (2013).Article 
CAS 
PubMed 

Google Scholar 
Andrey, G. et al. A switch between topological domains underlies HoxD genes collinearity in mouse limbs. Science 340(6137), 1234167 (2013).Article 
PubMed 

Google Scholar 
Kvon, E. Z. et al. Progressive loss of function in a limb enhancer during snake evolution. Cell 167(3), 633e11-642e11 (2016).Article 

Google Scholar 
Booker, B. M. et al. Bat accelerated regions identify a bat forelimb specific enhancer in the HoxD locus. PLoS Genet. 12(3), e1005738 (2016).Article 
MathSciNet 
PubMed 
PubMed Central 

Google Scholar 
Yakushiji-Kaminatsui, N. et al. Similarities and differences in the regulation of HoxD genes during chick and mouse limb development. PLoS Biol. 16(11), e3000004 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Nilsen, T. W. & Graveley, B. R. Expansion of the eukaryotic proteome by alternative splicing. Nature 463(7280), 457–463 (2010).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Barbosa-Morais, N. L. et al. The evolutionary landscape of alternative splicing in vertebrate species. Science 338(6114), 1587–1593 (2012).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Gueroussov, S. et al. Regulatory expansion in mammals of multivalent hnRNP assemblies that globally control alternative splicing. Cell 170(2), 324e23-339e23 (2017).Article 

Google Scholar 
Braunschweig, U. et al. Widespread intron retention in mammals functionally tunes transcriptomes. Genome Res. 24(11), 1774–1786 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fiszbein, A. & Kornblihtt, A. R. Alternative splicing switches: Important players in cell differentiation. Bioessays 39(6), 66 (2017).Article 

Google Scholar 
Pritsker, M. et al. Diversification of stem cell molecular repertoire by alternative splicing. Proc. Natl. Acad. Sci. USA 102(40), 14290–14295 (2005).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ohta, S. et al. Global splicing pattern reversion during somatic cell reprogramming. Cell Rep. 5(2), 357–366 (2013).Article 
CAS 
PubMed 

Google Scholar 
Chen, L. et al. Transcriptional diversity during lineage commitment of human blood progenitors. Science 345(6204), 1251033 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Bland, C. S. et al. Global regulation of alternative splicing during myogenic differentiation. Nucleic Acids Res. 38(21), 7651–7664 (2010).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mei, B. et al. Only the large soluble form of preadipocyte factor-1 (Pref-1), but not the small soluble and membrane forms, inhibits adipocyte differentiation: Role of alternative splicing. Biochem. J. 364(Pt 1), 137–144 (2002).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dillman, A. A. et al. mRNA expression, splicing and editing in the embryonic and adult mouse cerebral cortex. Nat. Neurosci. 16(4), 499–506 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fiszbein, A. et al. Alternative splicing of G9a regulates neuronal differentiation. Cell Rep. 14(12), 2797–2808 (2016).Article 
CAS 
PubMed 

Google Scholar 
Mosca, S. et al. Human NDE1 splicing and mammalian brain development. Sci. Rep. 7, 43504 (2017).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Su, C. H. & Tarn, W. Y. Alternative splicing in neurogenesis and brain development. Front. Mol. Biosci. 5, 12 (2018).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Baralle, F. E. & Giudice, J. Alternative splicing as a regulator of development and tissue identity. Nat. Rev. Mol. Cell Biol. 18(7), 437–451 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Merkin, J. et al. Evolutionary dynamics of gene and isoform regulation in Mammalian tissues. Science 338(6114), 1593–1599 (2012).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Keyte, A. L. & Smith, K. K. Developmental origins of precocial forelimbs in marsupial neonates. Development 137(24), 4283–4294 (2010).Article 
CAS 
PubMed 

Google Scholar 
Doroba, C. K. & Sears, K. E. The divergent development of the apical ectodermal ridge in the marsupial Monodelphis domestica. Anat. Rec. 293(8), 1325–1332 (2010).Article 

Google Scholar 
Sears, K. E. et al. The relationship between gene network structure and expression variation among individuals and species. PLoS Genet. 11(8), e1005398 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Onimaru, K. et al. Developmental hourglass and heterochronic shifts in fin and limb development. Elife 10, 66 (2021).Article 

Google Scholar 
Andrews, S., FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).Shen, S. et al. rMATS: Robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. Proc. Natl. Acad. Sci. USA 111(51), E5593–E5601 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dobin, A. et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29(1), 15–21 (2013).Article 
CAS 
PubMed 

Google Scholar 
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30(7), 923–930 (2014).Article 
CAS 
PubMed 

Google Scholar 
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1), 139–140 (2010).Article 
CAS 
PubMed 

Google Scholar 
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (ed. S.-V., 2016).Yang, G. et al. Jutils: A visualization toolkit for differential alternative splicing events. Bioinformatics 37(22), 4272–4274 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Garrido-Martin, D. et al. ggsashimi: Sashimi plot revised for browser- and annotation-independent splicing visualization. PLoS Comput. Biol. 14(8), e1006360 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Team, R.C., R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (2022).Sherman, B. T. et al. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 50(W1), W216–W221 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Crossley, P. H. & Martin, G. R. The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development 121(2), 439–451 (1995).Article 
CAS 
PubMed 

Google Scholar 
Sunmonu, N. A., Li, K. & Li, J. Y. Numerous isoforms of Fgf8 reflect its multiple roles in the developing brain. J. Cell Physiol. 226(7), 1722–1726 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Moon, A. M. & Capecchi, M. R. Fgf8 is required for outgrowth and patterning of the limbs. Nat. Genet. 26(4), 455–459 (2000).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chan, E. T. et al. Conservation of core gene expression in vertebrate tissues. J. Biol. 8(3), 33 (2009).Article 
PubMed 
PubMed Central 

Google Scholar 
Necsulea, A. et al. The evolution of lncRNA repertoires and expression patterns in tetrapods. Nature 505(7485), 635–640 (2014).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Beauchamp, M. C. et al. Spliceosomopathies and neurocristopathies: Two sides of the same coin?. Dev. Dyn. 249(8), 924–945 (2020).Article 
CAS 
PubMed 

Google Scholar 
Drake, K.D., et al. Minor spliceosome disruption causes limb growth defects without altering patterning. bioRxiv p. 2020.03.16.994384 (2020).Xia, B. et al. On the genetic basis of tail-loss evolution in humans and apes. Nature 626(8001), 1042–1048 (2024).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tompa, P. et al. Intrinsically disordered proteins: Emerging interaction specialists. Curr. Opin. Struct. Biol. 35, 49–59 (2015).Article 
CAS 
PubMed 

Google Scholar 
Singh, P. et al. The role of alternative splicing and differential gene expression in cichlid adaptive radiation. Genome Biol. Evol. 9(10), 2764–2781 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Corbett, A. H. Post-transcriptional regulation of gene expression and human disease. Curr. Opin. Cell Biol. 52, 96–104 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Franks, A., Airoldi, E. & Slavov, N. Post-transcriptional regulation across human tissues. PLoS Comput. Biol. 13(5), e1005535 (2017).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Sato, T. & Nakamura, H. The Fgf8 signal causes cerebellar differentiation by activating the Ras-ERK signaling pathway. Development 131(17), 4275–4285 (2004).Article 
CAS 
PubMed 

Google Scholar 
Olsen, S. K. et al. Structural basis by which alternative splicing modulates the organizer activity of FGF8 in the brain. Genes Dev. 20(2), 185–198 (2006).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fletcher, R. B., Baker, J. C. & Harland, R. M. FGF8 spliceforms mediate early mesoderm and posterior neural tissue formation in Xenopus. Development 133(9), 1703–1714 (2006).Article 
CAS 
PubMed 

Google Scholar 
Ornitz, D. M. & Itoh, N. The Fibroblast Growth Factor signaling pathway. Wiley Interdiscip. Rev. Dev. Biol. 4(3), 215–266 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, X. et al. Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J. Biol. Chem. 281(23), 15694–700 (2006).Article 
PubMed 

Google Scholar 
Handschuh, K. et al. ESCRT-II/Vps25 constrains digit number by endosome-mediated selective modulation of FGF-SHH signaling. Cell Rep. 9(2), 674–687 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Warzecha, C. C. et al. ESRP1 and ESRP2 are epithelial cell-type-specific regulators of FGFR2 splicing. Mol. Cell 33(5), 591–601 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Calabretta, S. & Richard, S. Emerging roles of disordered sequences in RNA-binding proteins. Trends Biochem. Sci. 40(11), 662–672 (2015).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles