Synthesis of silver nanoparticles embedded into melamine polyaminal networks as antibacterial and anticancer active agents

World Health Organisation (WHO), 2023, https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance#:~:text=As%20a%20result%20of%20drug,through%20genetic%20changes%20in%20pathogensAntimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance, a systematic analysis. The Lancet 399(10325), 629–655 (2019).
Google Scholar 
Huang, K. S. et al. Recent advances in antimicrobial polymers: a mini-review. Int J Mol Sci. 17(9), 1578 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Dorieh, A. et al. A review of recent progress in melamine-formaldehyde resin based nanocomposites as coating materials. Progr. Org. Coat. 165, 106768 (2022).Article 
CAS 

Google Scholar 
Shao, L., Liu, M., Sang, Y. & Huang, J. One-pot synthesis of melamine-based porous polyamides for CO2 capture. Microporous Mesoporous Mater. 285, 105–111 (2019).Article 
CAS 

Google Scholar 
Fawaz, J., & Mittal, V. Synthesis of polymer nanocomposites: review of various techniques. Synthesis techniques for polymer nanocomposites, 2014: 1–30.Fajal, S., Dutta, S., & Ghosh, S. K. Porous organic polymers (POPs) for environmental remediation. Materials Horizons, 2023: 4083.He, D. et al. Synthesis and study of low-cost nitrogen-rich porous organic polyaminals for efficient adsorption of iodine and organic dye. Chem. Eng. J. 446, 137119 (2022).Article 
CAS 

Google Scholar 
Wang, B. et al. Nitrogen-rich porous biochar for highly efficient adsorption of perchlorate: Influencing factors and mechanism. J. Environ. Chem. Eng. 11(3), 110293 (2023).Article 
CAS 

Google Scholar 
Yuan, K. et al. Facile synthesis and study of functional porous organic polyaminals with ultrahigh adsorption capacities and fast removal rate for rhodamine B dye. Microporous Mesoporous Mater. 344, 112234 (2022).Article 
CAS 

Google Scholar 
Dutta, D., Cole, N., Kumar, N. & Willcox, M. D. Broad spectrum antimicrobial activity of melimine covalently bound to contact lenses. Invest. Ophthalmol. Visual Sci. 54(1), 175–182 (2013).Article 
CAS 

Google Scholar 
Carmona-Ribeiro, A. M. & Araújo, P. M. Antimicrobial polymer− based assemblies: a review. Int. J. Mol. Sci. 22(11), 5424 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Qiu, H. et al. The mechanisms and the applications of antibacterial polymers in surface modification on medical devices. Front. Bioeng. Biotechnol. 8, 910 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Sun, C., Wang, X., Dai, J. & Ju, Y. Metal and metal oxide nanomaterials for fighting planktonic bacteria and biofilms: a review emphasizing on mechanistic aspects. Int. J. Mol. Sci. 23(19), 11348 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fan, D. et al. Functional insights to the development of bioactive material for combating bacterial infections. Front. Bioeng. Biotechnol. 11, 1186637 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
McKeown, N. B. Polymers of intrinsic microporosity (PIMs). Polymer 202, 122736 (2020).Article 
CAS 

Google Scholar 
Soria, R. B., & Luis, P. Antifouling membranes for polluted solvents treatment. In Current Trends and Future Developments on (Bio-) Membranes 2023,: 295–334. Elsevier.Yang, S. et al. Self-assembled short peptides: recent advances and strategies for potential pharmaceutical applications. Mater. Today Bio. 1(20), 100644 (2023).Article 

Google Scholar 
Antunes, J. C. et al. Recent trends in protective textiles against biological threats: a focus on biological warfare agents. Polymers 14(8), 1599 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Younis, S. A., Lim, D. K., Kim, K. H. & Deep, A. Metalloporphyrinic metal-organic frameworks: controlled synthesis for catalytic applications in environmental and biological media. Adv. Colloid Interface Sci. 2020(277), 102108 (2020).Article 

Google Scholar 
(a)-Song, Y., Phipps, J., Zhu, C., & Ma, S. Porous materials for water purification. Angewandte Chemie, 2023, 135(11). (b)- He, J., Feng, Y., Jiang, J. et al. Preparation and characterization of a sustained-release antibacterial melamine-impregnated paper based on Ag-BTC. J Mater Sci ,2023, 58, 6727–6742. https://doi.org/10.1007/s10853-023-08436-0(a)- Liao L. , Li M. , Yin Y. , Chen J. , Zhong Q. , Du R. , Liu S. , He Y. , Fu W. , Zeng, F. Advances in Synthesis of Covalent Triazine Framework, ACS Omega, 2023 8, 5, 4527–4542 https://doi.org/10.1021/acsomega.2c06961 (b)- Liu, M., Guo, L., Jin, S., & Tan, B. (2019). Covalent triazine frameworks: synthesis and applications. Journal of materials chemistry A, 2019, 7(10): 5153–5172.Shifrina, Z. B., Matveeva, V. G. & Bronstein, L. M. Role of polymer structures in catalysis by transition metal and metal oxide nanoparticle composites. Chem. Rev. 120(2), 1350–1396 (2019).Article 
PubMed 

Google Scholar 
Yang, C. et al. Nanofibrous porous organic polymers and their derivatives: from synthesis to applications. Adv. Sci. 11(19), 2400626 (2024).Article 
CAS 

Google Scholar 
(a)- Abbott, S., & Holmes, N. Nanocoatings: Principles and Practice: From Research to Production. DEStech Publications, Inc., 2013.(b)- Goda, E.S Abu Elella M. H., Sohail M., Singu B. S., Pandit B., El Shafey A.M., Aboraia A. M. , Gamal H. , Hong S. E., Yoon K. R., N-methylene phosphonic acid chitosan/graphene sheets decorated with silver nanoparticles as green antimicrobial agents, Int.J. Bio. Macromolecules, 2021,182, 680–688Yin, I. X. et al. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int. J. Nanomed. 15, 2555–2562 (2020).Article 
CAS 

Google Scholar 
Li, L. et al. Silver nanoparticles induce protective autophagy via Ca 2+ /CaMKKβ/AMPK/mTOR pathway in SH-SY5Y cells and rat brains. Nanotoxicology 13(3), 369–391 (2019).Article 
CAS 
PubMed 

Google Scholar 
Shanmuganathan, R. et al. An enhancement of antimicrobial efficacy of biogenic and ceftriaxone-conjugated silver nanoparticles: green approach. Environ. Sci. Pollut. Res. Int. 25(11), 10362–10370 (2018).Article 
CAS 
PubMed 

Google Scholar 
Hosnedlova, B., Kabanov, D., Kepinska, M. & Narayanan, B. Effect of biosynthesized silver nanoparticles on bacterial biofilm changes in s aureus and E coli.. Nanomater. Basel 12(13), 2183 (2022).Article 
CAS 

Google Scholar 
Saallah, S. & Lenggoro, I. W. Nanoparticles carrying biological molecules: recent advances and applications. KONA Powder Part J. 35, 89–111 (2018).Article 
CAS 

Google Scholar 
Fernando, S., Gunasekara, T. & Holton, J. Antimicrobial nanoparticles: applications and mechanisms of action. Sri Lankan J. Infect. Dis. 8(1), 2–11 (2018).Article 

Google Scholar 
(a)- Moritz M, Geszke-Moritz M. The newest achievements in synthesis, immobilization and practical applications of antibacterial nanoparticles. Chem Eng J. 2013, 228: 596–613 (b)- Goda E. S., Abu Elella, M.H., Hong, S.E. Pandit, B., Yoon K.R., Gamal H., Smart flame retardant coating containing carboxymethyl chitosan nanoparticles decorated graphene for obtaining multifunctional textiles. Cellulose 2021, 28, 5087–5105. https://doi.org/10.1007/s10570-021-03833-7 (c)- Abu Elella, M. H, Goda E. S, Yoon K.R., Hong, S. E. Morsy, M. S., Sadak R. A., Gamal H. , Novel vapor polymerization for integrating flame retardant textile with multifunctional properties, Composites Comm., 2021, 24, ,100614, https://doi.org/10.1016/j.coco.2020.100614.Barroso-Solares, S., Cimavilla-Roman, P., Rodriguez-Perez, M. A. & Pinto, J. Non-invasive approaches for the evaluation of the functionalization of melamine foams with in-situ synthesized silver nanoparticles. Polymers (Basel) 12(5), 996 (2020).Article 
CAS 
PubMed 

Google Scholar 
Alkayal N.S.l, Alotaibi M.M., Tashkandi N.Y., Alrayyani M. A.,. Synthesis and characterization of bipyridine-based polyaminal network for CO2 capture. Polym. Basel 14(18), 3746 (2022).
Google Scholar 
Md, S., Abdullah, S., Awan, Z. A. & Alhakamy, N. A. Smart Oral pH-responsive dual layer nano-hydrogel for dissolution enhancement and targeted delivery of naringenin using protein-polysaccharides complexation against colorectal cancer. J. Pharm. Sci. 111(11), 3155–3164 (2022).Article 
CAS 
PubMed 

Google Scholar 
Balouiri, M., Sadiki, M. & Ibnsouda, S. K. Methods for in vitro evaluating antimicrobial activity: a review. J. Pharm. Anal. 6(2), 71–79 (2016).Article 
PubMed 

Google Scholar 
Yang, Z. et al. Breast cancer resistance protein (ABCG2) determines distribution of genistein phase II metabolites: reevaluation of the roles of ABCG2 in the disposition of genistein. Drug Metab. Dispos. 40(10), 1883–1893 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Md, S. et al. Formulation design, statistical optimization, and in vitro evaluation of a naringenin nanoemulsion to enhance apoptotic activity in a549 lung cancer cells. Pharmaceuticals 13(7), 152 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bahrami, A. Effect of curcumin and its derivates on gastric cancer: molecular mechanisms. NuCancer 73(9), 1553–1569 (2021).CAS 

Google Scholar 
Martocq, L. & Douglas, T. E. L. Amine-rich coatings to potentially promote cell adhesion, proliferation and differentiation, and reduce microbial colonization: strategies for generation and characterization. Coatings 11(8), 983 (2021).Article 
CAS 

Google Scholar 
Abdullah, S., El Hadad, S. & Aldahlawi, A. The development of a novel oral 5-Fluorouracil in-situ gelling nanosuspension to potentiate the anticancer activity against colorectal cancer cells. Int. J. Pharm. 613, 121406 (2022).Article 
CAS 
PubMed 

Google Scholar 
Md, S. et al. Ambroxol hydrochloride loaded gastro-retentive nanosuspension gels potentiate anticancer activity in lung cancer (A549) cells. Gels 7(4), 243 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles