Corrosion behavior of additively manufactured FeCrAl in out-of-pile light water reactor environments

Rebak, R. B. Innovative accident tolerant nuclear fuel materials will help extending the life of light water reactors. KOM – Corros. Mater. Prot. J. 66, 36–39 (2022).CAS 

Google Scholar 
Rebak, R. B. Accident-Tolerant Materials for Light Water Reactor Fuels (Elsevier, 2020).Umretiya, R. V. et al. Mechanical and chemical properties of PVD and cold spray Cr-coatings on Zircaloy-4. J. Nucl. Mater. 541, 152420 (2020).Article 
CAS 

Google Scholar 
Yeom, H. et al. High temperature oxidation and microstructural evolution of cold spray chromium coatings on Zircaloy-4 in steam environments. J. Nucl. Mater. 526, 151737 (2019).Article 
CAS 

Google Scholar 
Maier, B. et al. Development of cold spray chromium coatings for improved accident tolerant zirconium-alloy cladding. J. Nucl. Mater. 519, 247–254 (2019).Article 
CAS 

Google Scholar 
Field, K. G., Snead, M. A., Yamamoto, Y. & Terrani, K. A. Handbook on the Material Properties of FeCrAl Alloys for Nuclear Power Production Applications (FY18 Version: Revision 1) (U.S. Department of EnergyOffice of Scientific and Technical Information, 2018).Rebak, R. B., Kim, Y. J., Gynnerstedt, J., Terrani, K. A. & Stachowski, R. E. Fabrication of FeCrAl Cladding for Accident Tolerant Fuel (Global Nuclear Fuel-Americas, 2016).Qu, H., Yin, L., Larsen, M. & Rebak, R. B. Distinctive oxide films develop on the surface of fecral as the environment changes for nuclear fuel cladding. Corros. Mater. Degrad. 5, 109–123 (2024).Article 
CAS 

Google Scholar 
Qu, H. J. et al. Effect of nickel on the oxidation behavior of FeCrAl alloy in simulated PWR and BWR conditions. Corros. Sci. 216, 111093 (2023).Article 
CAS 

Google Scholar 
Chikhalikar, A. S. et al. Effect of Al content on steam oxidation behavior for ferritic Fe-21Cr-xAl alloys. J. Nucl. Mater. 598, 155179 (2024).Article 
CAS 

Google Scholar 
Terrani, K. A. Accident tolerant fuel cladding development: promise, status, and challenges. J. Nucl. Mater. 501, 13–30 (2018).Article 
CAS 

Google Scholar 
Deck, C. P. et al. Characterization of SiC–SiC composites for accident tolerant fuel cladding. J. Nucl. Mater. 466, 667–681 (2015).Article 
CAS 

Google Scholar 
Terrani, K. A. et al. Uniform corrosion of FeCrAl alloys in LWR coolant environments. J. Nucl. Mater. 479, 36–47 (2016).Article 
CAS 

Google Scholar 
Bragg-Sitton, S. Advanced Fuels Campaign Light Water Reactor Accident Tolerant Fuel Performance Metrics Executive Summary (U.S. Department of Energy National Laboratory, 2014).Rebak, R. B. Iron-chrome-aluminum alloy cladding for increasing safety in nuclear power plants. EPJ Nucl. Sci. Technol. 3, 34 (2017).Article 

Google Scholar 
Rebak, R., Jurewicz, T., Larsen, M. & Sakamoto, K. Immersion testing of FeCrAl tubes under simulated light water nuclear reactor normal operation conditions. in Proceedings of the Top Fuel 2019 Conference (American Nuclear Society, 2019).Shi, Z. et al. Corrosion behavior of Nb-doped FeCrAl alloy in 500°C steam. Corros. Sci. 232, 112036 (2024).Article 
CAS 

Google Scholar 
Yin, L. et al. Uniform corrosion of FeCrAl cladding tubing for accident tolerant fuels in light water reactors. J. Nucl. Mater. 554, 153090 (2021).Article 
CAS 

Google Scholar 
Raiman, S. S., Field, K. G., Rebak, R. B., Yamamoto, Y. & Terrani, K. A. Hydrothermal corrosion of 2nd generation FeCrAl alloys for accident tolerant fuel cladding. J. Nucl. Mater. 536, 152221 (2020).Article 
CAS 

Google Scholar 
Qu, H. J. et al. FeCrAl fuel/clad chemical interaction in light water reactor environments. J. Nucl. Mater. 587, 154717 (2023).Article 
CAS 

Google Scholar 
Ning, F. et al. Uniform corrosion behavior of FeCrAl alloys in borated and lithiated high temperature water. J. Mater. Sci. Technol. 70, 136–144 (2021).Article 
CAS 

Google Scholar 
Hoffman, A. K. et al. Oxidation resistance in 1200 °C steam of a FeCrAl alloy fabricated by three metallurgical processes. JOM 74, 1690–1697 (2022).Article 
CAS 

Google Scholar 
Nagothi, B. S. et al. Hydrothermal corrosion of latest generation of FeCrAl alloys for nuclear fuel cladding. Materials 17, 1633 (2024).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chikhalikar, A. et al. Effect of aluminum on the FeCr(Al) alloy oxidation resistance in steam environment at low temperature (400°C) and high temperature (1200 °C). Corros. Sci. https://doi.org/10.1016/j.corsci.2022.110765 (2022).Pint, B. A. Performance of FeCrAl for accident-tolerant fuel cladding in high-temperature steam. Corros. Rev. 35, 167–175 (2017).Article 
CAS 

Google Scholar 
Kim, C. et al. Oxidation mechanism and kinetics of nuclear-grade FeCrAl alloys in the temperature range of 500–1500 °C in steam. J. Nucl. Mater. 564, 153696 (2022).Article 
CAS 

Google Scholar 
Qu, H. J. et al. Effect of molybdenum on the oxidation resistance of FeCrAl alloy in lower temperature (400 °C) and higher temperature (1200 °C) steam environments. Corros. Sci. 229, 111870 (2024).Article 
CAS 

Google Scholar 
Rebak, R. B., Jurewicz, T. B., Larsen, M. & Yin, L. Zinc water chemistry reduces dissolution of FeCrAl for nuclear fuel cladding. Corros. Sci. 198, 110156 (2022).Article 
CAS 

Google Scholar 
Umretiya, R. V. et al. Hydrothermal corrosion of PVD and cold spray Cr-coatings on Zircaloy-4 in hydrogenated and oxygenated LWR coolant environments. Nucl. Mater. Energy 37, 101519 (2023).Article 
CAS 

Google Scholar 
Sakamoto, K. et al. Development of accident tolerant FeCrAl-ODS fuel cladding for BWRs in Japan. J. Nucl. Mater. 557, 153276 (2021).Article 
CAS 

Google Scholar 
Rajendran, R. et al. Effect of aging and α’ segregation on oxidation and electrochemical behavior of FeCrAl alloys. J. Nucl. Mater. 588, 154751 (2024).Article 
CAS 

Google Scholar 
Zhou, R. et al. Effect of molybdenum addition on oxidation behavior and secondary protection mechanism of FeCrAl coatings. Mater. Charact. 204, 113221 (2023).Article 
CAS 

Google Scholar 
Yan, Y., Harp, J., Coq, A. L., Massey, C. & Linton, K. High-temperature steam oxidation study of irradiated FeCrAl defueled specimens. J. Nucl. Mater. 590, 154868 (2024).Article 
CAS 

Google Scholar 
Huang, S. et al. Microstructure and tensile behavior of powder metallurgy FeCrAl accident tolerant fuel cladding. J. Nucl. Mater. 560, 153524 (2022).Article 
CAS 

Google Scholar 
Rebak, R. B., Dolley, E. J., Zhang, W., Umretiya, R. V. & Hoffman, A. K. Enhanced Mechanical Properties of Iron-Chromium-Aluminum Cladding for Light Water Reactor Fuels (American Society of Mechanical Engineers Digital Collection, 2022).Sander, G. et al. Corrosion of Additively Manufactured Alloys: A Review. Vol. 74 (National Assoc. of Corrosion Engineers International, 2018).Biserova-Tahchieva, A., Biezma-Moraleda, M. V., Llorca-Isern, N., Gonzalez-Lavin, J. & Linhardt, P. Additive manufacturing processes in selected corrosion resistant materials: a state of knowledge review. Materials 16, 1893 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Örnek, C. Additive manufacturing – a general corrosion perspective. Corros. Eng., Sci. Technol. 53, 531–535 (2018).Article 

Google Scholar 
Dong, S. et al. Elucidating the grain-orientation dependent corrosion rates of austenitic stainless steels. Mater. Des. 191, 108583 (2020).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles