A dual growth mode unique for organic crystals relies on mesoscopic liquid precursors

Du, J. S., Bae, Y. & De Yoreo, J. J. Non-classical crystallization in soft and organic materials. Nat. Rev. Mater. 9, 229–248 (2024).Sang, X. et al. Ionic liquid accelerates the crystallization of Zr-based metal–organic frameworks. Nat. Commun. 8, 175 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Bangsund, J. S. et al. Formation of aligned periodic patterns during the crystallization of organic semiconductor thin films. Nat. Mater. 18, 725–731 (2019).Article 
CAS 
PubMed 

Google Scholar 
Lv, Q. et al. Lateral epitaxial growth of two-dimensional organic heterostructures. Nat. Chem. 16, 201–209 (2024).Article 
CAS 
PubMed 

Google Scholar 
Myerson, A. S. Handbook of Industrial Crystallization 3rd edn (Cambrifge University Press, 2019).Niazov‐Elkan, A. et al. Surface‐guided crystallization of xanthine derivatives for optical metamaterial applications. Adv. Mater. 36, 2306996 (2023).Hu, Y., Liang, J. K., Myerson, A. S. & Taylor, L. S. Crystallization monitoring by Raman spectroscopy:  simultaneous measurement of desupersaturation profile and polymorphic form in flufenamic acid systems. Ind. Eng. Chem. Res. 44, 1233–1240 (2005).Article 
CAS 

Google Scholar 
Bonnett, P. E., Carpenter, K. J., Dawson, S. & Davey, R. J. Solution crystallization via a submerged liquid-liquid phase boundary: oiling out. Chem. Commun. 698–699 (2003).Chakrabarti, R. G. & Vekilov, P. G. Attraction between permanent dipoles and London dispersion forces dominate the thermodynamics of organic crystallization. Cryst. Growth Des. 20, 7429–7438 (2020).Article 
CAS 

Google Scholar 
Khamar, D., Zeglinski, J., Mealey, D. & Rasmuson, Å. C. Investigating the role of solvent–solute interaction in crystal nucleation of salicylic acid from organic solvents. J. Am. Chem. Soc. 136, 11664–11673, (2014).Article 
CAS 
PubMed 

Google Scholar 
Lovette, M. A. & Doherty, M. F. Needle-shaped crystals: causality and solvent selection guidance based on periodic bond chains. Cryst. Growth Des. 13, 3341–3352 (2013).Article 
CAS 

Google Scholar 
Spijker, P. et al. Understanding the interface of liquids with an organic crystal surface from atomistic simulations and AFM experiments. J. Phys. Chem. C. 118, 2058–2066 (2014).Article 
CAS 

Google Scholar 
Harris, K. D. M., Hughes, C. E., Palmer, B. A. & Guillaume, F. New strategies for exploring crystallization processes of organic materials. Trans. Am. Crystallogr. Assoc. 43, 97–112 (2012).
Google Scholar 
Vekilov, P. G. What determines the rate of growth of crystals from solution? Cryst. Growth Des. 7, 2796–2810 (2007).Article 
CAS 

Google Scholar 
Farkas, L. Keimbildungsgeschwindigkeit in übersättigten Dämpfen. Z. Phys. Chem. 125, 236–242 (1927).Article 
CAS 

Google Scholar 
Stranski, I. N. & Kaischew, R. Über den Mechanismus des Gleichgewichtes kleiner Kriställchen. I. Z. Phys. Chem. B 26, 100–113 (1934).Article 

Google Scholar 
Stranski, I. N. & Kaischew, R. Über den Mechanismus des Gleichgewichtes kleiner Kriställchen. II. Z. Phys. Chem. B 26, 114–116 (1934).
Google Scholar 
Becker, R. & Döring, W. Kinetische behandlung der keimbildung in übersättigten dämpfen. Annalen der Physik 416, 719–752 (1935).Article 

Google Scholar 
Volmer, M. Kinetik der Phasenbildung (Steinkopff, 1939).Zel’dovich, Y. B. Theory of new phase formation: cavitation. Acta Physicochimica URSS 18, 1–22 (1943).
Google Scholar 
Stranski, I. N. Zur Theorie des Kristallwachstums. Z. Phys. Chem. 136, 259–278 (1928).Article 
CAS 

Google Scholar 
Burton, W. K., Cabrera, N. & Frank, F. C. The growth of crystals and equilibrium structure of their surfaces. Philos. Trans. Roy. Soc. Lond. Ser. A 243, 299–360 (1951).Article 

Google Scholar 
Chernov, A. A. The spiral growth of crystals. Sov. Phys. Uspekhi 4, 116–148 (1961).Article 

Google Scholar 
Yau, S.-T., Thomas, B. R. & Vekilov, P. G. Molecular mechanisms of crystallization and defect formation. Phys. Rev. Lett. 85, 353–356 (2000).Article 
CAS 
PubMed 

Google Scholar 
Yau, S.-T. & Vekilov, P. G. Quasi-planar nucleus structure in apoferritin crystallisation. Nature 406, 494–497, (2000).Article 
CAS 
PubMed 

Google Scholar 
Georgiou, D. K. & Vekilov, P. G. A fast response mechanism for insulin storage in crystals may involve kink generation by association of 2D clusters. Proc. Natl Acad. Sci. USA 103, 1681–1686, (2006).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chernov, A. A., Rashkovich, L. N. & Mkrtchan, A. A. Solution growth kinetics and mechanism: primatic face of KDP. J. Cryst. Growth 74, 101–112 (1986).Article 
CAS 

Google Scholar 
Maiwa, K., Tsukamoto, K. & Sunagawa, I. Activities of spiral growth hillocks on the (111) faces of barium nitrate crystals growing in an aqueous solution. J. Cryst. Growth 102, 43–53 (1990).Article 
CAS 

Google Scholar 
Vekilov, P. G., Kuznetsov, Y. G. & Chernov, A. A. Interstep interaction in solution growth; (101) ADP face. J. Cryst. Growth 121, 643–655 (1992).Article 
CAS 

Google Scholar 
Vekilov, P. G., Kuznetsov, Y. G. & Chernov, A. A. The effect of temperature on step motion; (101) ADP face. J. Cryst. Growth 121, 44–52 (1992).Article 
CAS 

Google Scholar 
Galkin, O. & Vekilov, P. G. Control of protein crystal nucleation around the metastable liquid-liquid phase boundary. Proc. Natl Acad. Sci. USA 97, 6277–6281, (2000).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kuznetsov, Y. G., Malkin, A. J. & McPherson, A. The liquid protein phase in crystallization: a case study intact immunoglobins. J. Cryst. Growth 232, 30–39 (2001).Article 
CAS 

Google Scholar 
Galkin, O., Chen, K., Nagel, R. L., Hirsch, R. E. & Vekilov, P. G. Liquid-liquid separation in solutions of normal and sickle cell hemoglobin. Proc. Natl Acad. Sci. USA 99, 8479–8483 (2002).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gebauer, D., Volkel, A. & Colfen, H. Stable prenucleation calcium carbonate clusters. Science 322, 1819–1822 (2008).Article 
CAS 
PubMed 

Google Scholar 
Pouget, E. M. et al. The initial stages of template-controlled CaCO3 formation revealed by cryo-TEM. Science 323, 1455–1458 (2009).Article 
CAS 
PubMed 

Google Scholar 
De Yoreo, J. Crystal nucleation: more than one pathway. Nat. Mater. 12, 284–285, (2013).Article 
PubMed 

Google Scholar 
Yamazaki, T. et al. Two types of amorphous protein particles facilitate crystal nucleation. Proc. Natl Acad. Sci. 114, 2154–2159 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Houben, L., Weissman, H., Wolf, S. G. & Rybtchinski, B. A mechanism of ferritin crystallization revealed by cryo-STEM tomography. Nature 579, 540–543 (2020).Article 
CAS 
PubMed 

Google Scholar 
Tsarfati, Y. et al. Crystallization of organic molecules: nonclassical mechanism revealed by direct imaging. ACS Cent. Sci. 4, 1031–1036 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Van Driessche, A. E. S. et al. Molecular nucleation mechanisms and control strategies for crystal polymorph selection. Nature 556, 89–94 (2018).Article 
PubMed 

Google Scholar 
Gliko, O. et al. A metastable prerequisite for the growth of lumazine synthase crystals. J. Am. Chem. Soc. 127, 3433–3438 (2005).Article 
CAS 
PubMed 

Google Scholar 
Li, D. et al. Direction-specific interactions control crystal growth by oriented attachment. Science 336, 1014–1018 (2012).Article 
CAS 
PubMed 

Google Scholar 
Lupulescu, A. I. & Rimer, J. D. In situ imaging of silicalite-1 surface growth reveals the mechanism of crystallization. Science 344, 729–732, (2014).Article 
CAS 
PubMed 

Google Scholar 
De Yoreo, J. J. et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 349, aaa6760 (2015).Article 
PubMed 

Google Scholar 
Zhu, G. et al. Self-similar mesocrystals form via interface-driven nucleation and assembly. Nature 590, 416–422 (2021).Article 
CAS 
PubMed 

Google Scholar 
Penn, R. L. & Banfield, J. F. Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science 281, 969–971, (1998).Article 
CAS 
PubMed 

Google Scholar 
Salzmann, B. B. V., van der Sluijs, M. M., Soligno, G. & Vanmaekelbergh, D. Oriented attachment: from natural crystal growth to a materials engineering tool. Acc. Chem. Res. 54, 787–797 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hoang, M. H. et al. Unusually high-performing organic field-effect transistors based on π-extended semiconducting porphyrins. Adv. Mater. 24, 5363–5367 (2012).Article 
CAS 
PubMed 

Google Scholar 
Che, C.-M. et al. A high-performance organic field-effect transistor based on platinum(II) porphyrin: peripheral substituents on porphyrin ligand significantly affect film structure and charge mobility. Chem. Asian J. 3, 1092–1103 (2008).Article 
CAS 
PubMed 

Google Scholar 
Bai, R. et al. Switching between classical/nonclassical crystallization pathways of TS-1 zeolite: implication on titanium distribution and catalysis. Chem. Sci. 13, 10868–10877 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Greer, H. F. Non-classical crystal growth of inorganic and organic materials. Mater. Sci. Technol. 30, 611–626 (2014).Article 
CAS 

Google Scholar 
Mallette, A. J., Seo, S. & Rimer, J. D. Synthesis strategies and design principles for nanosized and hierarchical zeolites. Nat. Synth. 1, 521–534 (2022).Article 

Google Scholar 
Wallace, A. F. et al. Microscopic evidence for liquid-liquid separation in supersaturated CaCO3 solutions. Science 341, 885–889 (2013).Article 
CAS 
PubMed 

Google Scholar 
Bewernitz, M. A., Gebauer, D., Long, J., Cölfen, H. & Gower, L. B. A metastable liquid precursor phase of calcium carbonate and its interactions with polyaspartate. Faraday Discuss. 159, 291–312 (2012).Article 
CAS 

Google Scholar 
Van Driessche, A. E. S. et al. The role and implications of bassanite as a stable precursor phase to gypsum precipitation. Science 336, 69–72 (2012).Article 
PubMed 

Google Scholar 
Nielsen, M. H., Aloni, S. & De Yoreo, J. J. In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways. Science 345, 1158–1162, (2014).Article 
CAS 
PubMed 

Google Scholar 
Chakrabarti, R., Verma, L., Hadjiev, V. G., Palmer, J. C. & Vekilov, P. G. The elementary reactions for incorporation into crystals. Proc. Natl Acad. Sci. 121, e2320201121 (2024).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sosa, R. D., Geng, X., Reynolds, M. A., Rimer, J. D. & Conrad, J. C. A microfluidic approach for probing hydrodynamic effects in barite scale formation. Lab Chip 19, 1534–1544 (2019).Article 
CAS 
PubMed 

Google Scholar 
Chernov, A. A. Modern Crystallography III, Crystal Growth (Springer, 1984).De Yoreo, J. J. & Vekilov, P. G. Principles of crystal nucleation and growth. Rev. Mineral. Geochem. 54, 57–93 (2003).Tang, W. et al. Tautomerism unveils a self-inhibition mechanism of crystallization. Nat. Commun. 14, 561 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Olafson, K. N., Ketchum, M. A., Rimer, J. D. & Vekilov, P. G. Mechanisms of hematin crystallization and inhibition by the antimalarial drug chloroquine. Proc. Natl Acad. Sci. 112, 4946–4951 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Verma, L. et al. How to identify the crystal growth unit. Isr. J. Chem. 61, 1–11 (2021).Article 

Google Scholar 
Bostanov, V., Staikov, G. & Roe, D. K. Rate of propagation of growth layers on cubic crystal faces in electrocrystallization of silver. J. Electrochem. Soc. 122, 1301–1305 (1975).Article 
CAS 

Google Scholar 
Chernov, A. A. et al. Processes of growth of crystals from aqueous solutions. in Growth of Crystals, Vol. 15 (ed. Givargizov, E. E.) 43–91 (Consultant Bureau, 1986).Kashchiev, D. Nucleation. Basic Theory with Applications (Butterworth Heinemann, 2000).Olafson, K. N., Rimer, J. D. & Vekilov, P. G. Early onset of kinetic roughening due to a finite step width in hematin crystallization. Phys. Rev. Lett. 119, 198101 (2017).Article 
PubMed 

Google Scholar 
Warzecha, M. et al. Precrystallization solute assemblies and crystal symmetry. Faraday Discuss. 235, 307–321 (2022).Article 
CAS 
PubMed 

Google Scholar 
Warzecha, M. et al. Olanzapine crystal symmetry originates in preformed centrosymmetric solute dimers. Nat. Chem. 12, 914–920 (2020).Article 
CAS 
PubMed 

Google Scholar 
Chakrabarti, R. & Vekilov, P. G. Dual mode of action of organic crystal growth inhibitors. Cryst. Growth Des. 21, 7053–7064 (2021).Article 
CAS 

Google Scholar 
Chernov, A. A., Smol’skii, I. L., Parvov, V. F., Kuznetsov, Y. G. & Rozhanskii, V. N. X-ray diffraction investigation of the growth of ADP crystals. Sov. Phys. Crystallogr. 25, 469–474 (1980).
Google Scholar 
Vekilov, P. G. & Kuznetsov, Y. G. Growth kinetics irregularities due to changed dislocation source activity; (101) ADP face. J. Cryst. Growth 119, 248–260 (1992).Article 
CAS 

Google Scholar 
Joswiak, M. N., Peters, B. & Doherty, M. F. Nonequilibrium kink density from one-dimensional nucleation for step velocity predictions. Cryst. Growth Des. 18, 723–727 (2018).Article 
CAS 

Google Scholar 
Lovette, M. A. & Doherty, M. F. Multisite models to determine the distribution of kink sites adjacent to low-energy edges. Phys. Rev. E 85, 021604 (2012).Article 

Google Scholar 
Mazal, T. & Doherty, M. F. Modeling morphologies of organic crystals via kinetic Monte Carlo simulations: noncentrosymmetric growth units. Cryst. Growth Des. 24, 3756–3770 (2024).Article 
CAS 

Google Scholar 
Padwal, N. A. & Doherty, M. F. Step velocity growth models for molecular crystals: two molecules in the unit cell. Cryst. Growth Des. 24, 4368–4379 (2024).Article 
CAS 

Google Scholar 
Voronkov, V. V. The movement of an elementary step by means of the formation of one-dimensional nuclei. Sov. Phys. Crystallogr. 15, 8–13 (1970).
Google Scholar 
Cabrera, N. & Vermilyea, D. A. The growth of crystals form solution. in Growth and Perfection of Crystals, Vol. 393–408 (eds Doremus, R. H., Roberts, B. W. & Turnbul, D.) (Wiley, 1958).Dybeck, E. C. et al. A comparison of methods for computing relative anhydrous–hydrate stability with molecular simulation. Cryst. Growth Des. 23, 142–167 (2023).Article 
CAS 

Google Scholar 
Shtukenberg, A. G., Ward, M. D. & Kahr, B. Crystal growth with macromolecular additives. Chem. Rev. 117, 14042–14090 (2017).Article 
CAS 
PubMed 

Google Scholar 
Voronkov, V. V. & Rashkovich, L. N. Step kinetics in the presence of mobile adsorbed impurity. J. Cryst. Growth 144, 107–115 (1994).Article 
CAS 

Google Scholar 
Ma, W., Lutsko, J. F., Rimer, J. D. & Vekilov, P. G. Antagonistic cooperativity between crystal growth modifiers. Nature 577, 497–501 (2020).Article 
CAS 
PubMed 

Google Scholar 
De Yoreo, J. J. Physical mechanisms of crystal growth modification by biomolecules. AIP Conf. Proc. 1270, 45–58 (2010).Article 

Google Scholar 
Bhattacharjee, A. & Roy, M. N. Density, viscosity, and speed of sound of (1-Octanol + 2-Methoxyethanol), (1-Octanol + N,N-Dimethylacetamide), and (1-Octanol + Acetophenone) at temperatures of (298.15, 308.15, and 318.15) K. J. Chem. Eng. Data 55, 5914–5920 (2010).Article 
CAS 

Google Scholar 
Verma, L., Vekilov, P. G. & Palmer, J. C. Solvent structure and dynamics near the surfaces of β-hematin crystals. J. Phys. Chem. B 125, 11264–11274 (2021).Article 
CAS 
PubMed 

Google Scholar 
Kamat, K., Naullage, P. M., Molinero, V. & Peters, B. Oriented attachment kinetics for rod-like particles at a flat surface: Buffon’s needle at the nanoscale. J. Chem. Phys. 157, 214113 (2022).Eyring, H., Lin, S. H. & Lin, S. M. Basic Chemical Kinetics (John Wiley and Sons, 1980).Olafson, K. N., Ketchum, M. A., Rimer, J. D. & Vekilov, P. G. Molecular mechanisms of hematin crystallization from organic solvent. Cryst. Growth Des. 15, 5535–5542 (2015).Article 
CAS 

Google Scholar 
Vekilov, P. G., Verma, L., Palmer, J. C., Chakrabarti, R. & Warzecha, M. The pathway from the solution to the steps. J. Cryst. Growth 599, 126870 (2022).Article 
CAS 

Google Scholar 
Land, T. A., Martin, T. L., Potapenko, S., Palmore, G. T. & De Yoreo, J. J. Recovery of surfaces from impurity poisoning during crystal growth. Nature 399, 442–445 (1999).Article 
CAS 

Google Scholar 
Ma, W. et al. Nonclassical mechanisms to irreversibly suppress β-hematin crystal growth. Commun. Biol. 6, 783 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Furukawa, Y. et al. Oscillations and accelerations of ice crystal growth rates in microgravity in presence of antifreeze glycoprotein impurity in supercooled water. Sci. Rep. 7, 43157 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Born, M. & Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light 7 edn (Cambridge University Press, 1999).Vorontsova, M. A., Vekilov, P. G. & Maes, D. Characterization of the diffusive dynamics of particles with time-dependent asymmetric microscopy intensity profiles. Soft Matter 12, 6926–6936 (2016).Article 
CAS 
PubMed 

Google Scholar 
Vorontsova, M. A., Chan, H. Y., Lubchenko, V. & Vekilov, P. G. Lack of dependence of the sizes of the mesoscopic protein clusters on electrostatics. Biophys. J. 109, 1959–1968 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, Y., Lubchenko, V. & Vekilov, P. G. The use of dynamic light scattering and Brownian microscopy to characterize protein aggregation. Rev. Sci. Instrum. 82, 053106 (2011).Article 
PubMed 

Google Scholar 
Maes, D. et al. Do protein crystals nucleate within dense liquid clusters? Acta Crystallogr. Sect. F 71, 815–822 (2015).Article 
CAS 

Google Scholar 
Safari, M. S. et al. Anomalous dense liquid condensates host the nucleation of tumor suppressor p53 fibrils. iScience 12, 342–355 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yang, D. S. et al. Mesoscopic protein-rich clusters host the nucleation of mutant p53 amyloid fibrils. Proc. Natl Acad. Sci. 118, e2015618118 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Brangwynne, C. P. et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729–1732 (2009).Article 
CAS 
PubMed 

Google Scholar 
Feric, M. et al. Coexisting liquid phases underlie nucleolar subcompartments. Cell 165, 1686–1697 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Debenedetti, P. G. Metastable Liquids (Princeton University Press, 1996).Broide, M. L., Berland, C. R., Pande, J., Ogun, O. O. & Benedek, G. B. Binary liquid phase separation of lens proteins solutions. Proc. Natl Acad. Sci. USA 88, 5660–5664, (1991).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Muschol, M. & Rosenberger, F. Liquid-liquid phase separation in supersaturated lysozyme solutions and associated precipitate formation/crystallization. J. Chem. Phys. 107, 1953–1962 (1997).Article 
CAS 

Google Scholar 
Chen, K., Ballas, S. K., Hantgan, R. R. & Kim-Shapiro, D. B. Aggregation of normal and sickle hemoglobin in high concentration phosphate buffer. Biophys. J. 84, 4113–4121 (2004).Article 

Google Scholar 
Schubert, R. et al. Real-time observation of protein dense liquid cluster evolution during nucleation in protein crystallization. Cryst. Growth Des. 17, 954–958 (2017).Article 
CAS 

Google Scholar 
Pan, W., Galkin, O., Filobelo, L., Nagel, R. L. & Vekilov, P. G. Metastable mesoscopic clusters in solutions of sickle cell hemoglobin. Biophys. J. 92, 267–277, (2007).Article 
CAS 
PubMed 

Google Scholar 
Pan, W., Vekilov, P. G. & Lubchenko, V. The origin of anomalous mesoscopic phases in protein solutions. J. Phys. Chem. B 114, 7620–7630, (2010).Article 
CAS 
PubMed 

Google Scholar 
Warzecha, M., Safari, M. S., Florence, A. J. & Vekilov, P. G. Mesoscopic solute-rich clusters in olanzapine solutions. Cryst. Growth Des. 17, 6668–6676 (2017).Article 
CAS 

Google Scholar 
Sun, X. et al. Rational design of a self-assembling high performance organic nanofluorophore for intraoperative NIR-II image-guided tumor resection of oral cancer. Adv. Sci. 10, 2206435 (2023).Article 
CAS 

Google Scholar 
Safari, M. S., Byington, M. C., Conrad, J. C. & Vekilov, P. G. Polymorphism of lysozyme condensates. J. Phys. Chem. B 121, 9091–9101 (2017).Article 
CAS 
PubMed 

Google Scholar 
Li, Y., Lubchenko, V., Vorontsova, M. A., Filobelo, L. & Vekilov, P. G. Ostwald-like ripening of the anomalous mesoscopic clusters in protein solutions. J. Phys. Chem. B 116, 10657–10664, (2012).Article 
CAS 
PubMed 

Google Scholar 
Byington, M. C. et al. Weakly-bound dimers that underlie the crystal nucleation precursors in lysozyme solutions. bioRxiv https://doi.org/10.1101/275222 (2018).Chan, Ho. Y., Lankevich, V., Vekilov, P. G. & Lubchenko, V. Anisotropy of the Coulomb interaction between folded proteins: consequences for mesoscopic aggregation of lysozyme. Biophys. J. 102, 1934–1943 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lutsko, J. F. Mechanism for the stabilization of protein clusters above the solubility curve: the role of non-ideal chemical reactions. J. Phys. Condens. Matter 28, 244020 (2016).Article 
CAS 
PubMed 

Google Scholar 
Whitelam, S. Control of pathways and yields of protein crystallization through the interplay of nonspecific and specific attractions. Phys. Rev. Lett. 105, 088102 (2010).Article 
PubMed 

Google Scholar 
Warzecha, M., Florence, A. J. & Vekilov, P. G. The ambiguous functions of the precursors that enable nonclassical modes of olanzapine nucleation and growth. Crystals 11, 738 (2021).Article 
CAS 

Google Scholar 
Mallette, A. J., Shilpa, K. & Rimer, J. D. The current understanding of mechanistic pathways in zeolite crystallization. Chem. Rev. https://doi.org/10.1021/acs.chemrev.3c00801 (2024).Böer, K. W. & Pohl, U. W. Defects in amorphous and organic semiconductors. In: Semiconductor Physics. (Springer, Cham 2022).Asgar Pour, Z., Alassmy, Y. A. & Sebakhy, K. O. A survey on zeolite synthesis and the crystallization process: mechanism of nucleation and growth steps. Crystals 13, 959 (2023).Article 
CAS 

Google Scholar 
De Yoreo, J. J., Burnham, A. K. & Whitman, P. K. Developing KH2PO4 and KD2PO4 crystals for the world’s most powerful laser. Int. Mater. Rev. 47, 152 (2002).Article 

Google Scholar 
Chipman, R., Lam, W. S. T. & Young, G. Polarized Light and Optical Systems 1st edn (CRC Press, 2018).Gil, J. J. & Ossikovski, R. Polarized Light and the Mueller Matrix Approach 2nd edn (CRC Press, 2022).Arteaga, O. et al. Mueller matrix microscope with a dual continuous rotating compensator setup and digital demodulation. Appl. Opt. 53, 2236–2245 (2014).Article 
PubMed 

Google Scholar 
Nichols, S. M. Coherence in Polarimetry. PhD dissertation, New York University (2018).Arteaga, O. & Kahr, B. Mueller matrix polarimetry of bianisotropic materials [Invited]. J. Opt. Soc. Am. B 36, F72–F83 (2019).Article 
CAS 

Google Scholar 
Cui, X. et al. Dichroism in helicoidal crystals. J. Am. Chem. Soc. 138, 12211–12218 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tan, M. et al. Polarized light through polycrystalline vaterite helicoids. Chem. Commun. 56, 7353–7356 (2020).Article 
CAS 

Google Scholar 
Whittaker, S. J. et al. Leveling up organic semiconductors with crystal twisting. Cryst. Growth Des. 24, 613–626 (2023).Kim, D., Moore, J., McCoy, C. P., Irwin, N. J. & Rimer, J. D. Engaging a battle on two fronts: dual role of polyphosphates as potent inhibitors of struvite nucleation and crystal growth. Chem. Mater. 32, 8672–8682 (2020).Filipe, V., Hawe, A. & Jiskoot, W. Critical evaluation of nanoparticle tracking analysis (NTA) by nanosight for the measurement of nanoparticles and protein aggregates. Pharm. Res. 27, 796–810 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, C. et al. Multichannel Mueller matrix ellipsometer based on the dual rotating compensator principle. Thin Solid Films 455-456, 14–23 (2004).Article 
CAS 

Google Scholar 
Azzam, R. M. A. Photopolarimetric measurement of the Mueller matrix by Fourier analysis of a single detected signal. Opt. Lett. 2, 148–150, (1978).Article 
CAS 
PubMed 

Google Scholar 
Tan, M. S. The Chiroptics of Imperfect Crystals. PhD Dissertation, New York University (2020).

Hot Topics

Related Articles