Electrochemical meta-C–H sulfonylation of pyridines with nucleophilic sulfinates

Kwong, H. et al. Chiral pyridine-containing ligands in asymmetric catalysis. Coord. Chem. Rev. 251, 2188–2222 (2007).Article 
CAS 

Google Scholar 
Kallitsis, J. K., Geormezi, M. & Neophytides, S. G. Polymer electrolyte membranes for high‐temperature fuel cells based on aromatic polyethers bearing pyridine units. Polym. Int. 58, 1226–1233 (2009).Article 
CAS 

Google Scholar 
Baumann, M. & Baxendale, I. R. An overview of the synthetic routes to the best selling drugs containing 6-membered heterocycles. Beilstein J. Org. Chem. 9, 2265–2319 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
De Ruiter, G., Lahav, M. & Van Der Boom, M. E. Pyridine coordination chemistry for molecular assemblies on surfaces. Acc. Chem. Res. 47, 3407–3416 (2014).Article 
PubMed 

Google Scholar 
Vitaku, E., Smith, D. T. & Njardarson, J. T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals: miniperspective. J. Med. Chem. 57, 10257–10274 (2014).Article 
CAS 
PubMed 

Google Scholar 
Zafar, M. N. et al. Pyridine and related ligands in transition metal homogeneous catalysis. Russ. J. Coord. Chem. 42, 1–18 (2016).Article 
CAS 

Google Scholar 
Bhutani, P. et al. U.S. FDA approved drugs from 2015–June 2020: a perspective. J. Med. Chem. 64, 2339–2381 (2021).Article 
CAS 
PubMed 

Google Scholar 
Murakami, K., Yamada, S., Kaneda, T. & Itami, K. C–H functionalization of azines. Chem. Rev. 117, 9302–9332 (2017).Article 
CAS 
PubMed 

Google Scholar 
Josephitis, C. M., Nguyen, H. M. H. & McNally, A. Late-stage C–H functionalization of azines. Chem. Rev. 123, 7655–7691 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Nakao, Y. Transition-metal-catalyzed C–H functionalization for the synthesis of substituted pyridines. Synthesis 2011, 3209–3219 (2011).Article 

Google Scholar 
Balkenhohl, M., Knochel, P. & Regioselective, C. –H. Activation of substituted pyridines and other azines using Mg- and Zn-TMP-bases. SynOpen 2, 0078–0095 (2018).Article 
CAS 

Google Scholar 
Proctor, R. S. J. & Phipps, R. J. Recent advances in minisci‐type reactions. Angew. Chem. Int. Ed. 58, 13666–13699 (2019).Article 
CAS 

Google Scholar 
Bull, J. A., Mousseau, J. J., Pelletier, G. & Charette, A. B. Synthesis of pyridine and dihydropyridine derivatives by regio- and stereoselective addition to N-activated pyridines. Chem. Rev. 112, 2642–2713 (2012).Article 
CAS 
PubMed 

Google Scholar 
Dolewski, R. D., Hilton, M. C. & McNally, A. 4-selective pyridine functionalization reactions via heterocyclic phosphonium salts. Synlett 29, 08–14 (2017).
Google Scholar 
Giam, C.-S. & Abbott, S. D. Novel synthesis of 3-substituted pyridines from pyridine. J. Am. Chem. Soc. 93, 1294–1296 (1971).Article 
CAS 

Google Scholar 
Tsuge, O., Kanemasa, S., Naritomi, T. & Tanaka, J. Regioselective alkyl group introduction at the 3-position of pyridine via 1,4-bis(trimethylsilyl)−1,4-dihydropyridine. Chem. Lett. 13, 1255–1258 (1984).Article 

Google Scholar 
Sun, G.-Q. et al. Electrochemical reactor dictates site selectivity in N-heteroarene carboxylations. Nature 615, 67–72 (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Stephens, D. E. & Larionov, O. V. Recent advances in the C–H-functionalization of the distal positions in pyridines and quinolines. Tetrahedron 71, 8683–8716 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cao, H., Cheng, Q. & Studer, A. meta‐selective C−H functionalization of pyridines. Angew. Chem. Int. Ed. 62, e202302941 (2023).Article 
CAS 

Google Scholar 
Olah, G. A. Aromatic substitution. XXVIII. Mechanism of electrophilic aromatic substitutions. Acc. Chem. Res. 4, 240–248 (1971).Article 
CAS 

Google Scholar 
Yu, I. F., Wilson, J. W. & Hartwig, J. F. Transition-metal-catalyzed silylation and borylation of C−H bonds for the synthesis and functionalization of complex molecules. Chem. Rev. 123, 11619–11663 (2023).Article 
CAS 
PubMed 

Google Scholar 
Zhang, T. et al. A directive Ni catalyst overrides conventional site selectivity in pyridine C–H alkenylation. Nat. Chem. 13, 1207–1213 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ye, M. et al. Ligand-promoted C3-selective arylation of pyridines with Pd catalysts: gram-scale synthesis of (±)-preclamol. J. Am. Chem. Soc. 133, 19090–19093 (2011).Article 
CAS 
PubMed 

Google Scholar 
Ye, M., Gao, G.-L. & Yu, J.-Q. Ligand-promoted C-3 selective C–H olefination of pyridines with Pd catalysts. J. Am. Chem. Soc. 133, 6964–6967 (2011).Article 
CAS 
PubMed 

Google Scholar 
Gao, G.-L., Xia, W., Jain, P. & Yu, J.-Q. Pd(II)-catalyzed C3-selective arylation of pyridine with (hetero)arenes. Org. Lett. 18, 744–747 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wübbolt, S. & Oestreich, M. Catalytic electrophilic C−H silylation of pyridines enabled by temporary dearomatization. Angew. Chem. Int. Ed. 54, 15876–15879 (2015).Article 

Google Scholar 
Liu, Z. et al. Borane-catalyzed C3-alkylation of pyridines with imines, aldehydes, or ketones as electrophiles. J. Am. Chem. Soc. 144, 4810–4818 (2022).Article 
CAS 
PubMed 

Google Scholar 
Zhou, X.-Y., Zhang, M., Liu, Z., He, J.-H. & Wang, X.-C. C3-selective trifluoromethylthiolation and difluoromethylthiolation of pyridines and pyridine drugs via dihydropyridine intermediates. J. Am. Chem. Soc. 144, 14463–14470 (2022).Article 
CAS 
PubMed 

Google Scholar 
Liu, Z. et al. Asymmetric C3-allylation of pyridines. J. Am. Chem. Soc. 145, 11789–11797 (2023).Article 
CAS 
PubMed 

Google Scholar 
Tian, J., Li, R., Tian, G. & Wang, X. Enantioselective C3‐allylation of pyridines via tandem borane and palladium catalysis. Angew. Chem. Int. Ed. 62, e202307697 (2023).Article 
CAS 

Google Scholar 
Zhang, M. et al. C3‐cyanation of pyridines: constraints on electrophiles and determinants of regioselectivity. Angew. Chem. Int. Ed. 62, e202216894 (2023).Article 
CAS 

Google Scholar 
Boyle, B. T., Levy, J. N., De Lescure, L., Paton, R. S. & McNally, A. Halogenation of the 3-position of pyridines through Zincke imine intermediates. Science 378, 773–779 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Nguyen, H. M. H. et al. Synthesis of 15N-pyridines and higher mass isotopologs via Zincke imine. Intermed. J. Am. Chem. Soc. 146, 2944–2949 (2024).Article 
CAS 

Google Scholar 
Selingo, J. D. et al. A general strategy for N-(hetero)arylpiperidine synthesis using Zincke imine. Intermed. J. Am. Chem. Soc. 146, 936–945 (2024).Article 
CAS 

Google Scholar 
Wang, H. & Greaney, M. F. Regiodivergent arylation of pyridines via Zincke intermediates. Angew. Chem. Int Ed. 63, e202315418 (2024).Article 
CAS 

Google Scholar 
Cao, H., Cheng, Q. & Studer, A. Radical and ionic meta -C–H functionalization of pyridines, quinolines, and isoquinolines. Science 378, 779–785 (2022).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Cao, H., Bhattacharya, D., Cheng, Q. & Studer, A. C. –H. Functionalization of pyridines via oxazino pyridine intermediates: switching to para-selectivity under acidic conditions. J. Am. Chem. Soc. 145, 15581–15588 (2023).Article 
CAS 
PubMed 

Google Scholar 
Cheng, Q. et al. Skeletal editing of pyridines through atom-pair swap from CN to CC. Nat. Chem. https://doi.org/10.1038/s41557-023-01428-2 (2024).Barranco, S., Zhang, J., López-Resano, S., Casnati, A. & Pérez-Temprano, M. H. Transition metal-catalysed directed C–H functionalization with nucleophiles. Nat. Synth. 1, 841–853 (2022).Article 
ADS 

Google Scholar 
Zeng, Z., Goebel, J. F., Liu, X. & Gooßen, L. J. 2,2′-biaryldicarboxylate synthesis via electrocatalytic dehydrogenative C–H/C–H coupling of benzoic acids. ACS Catal. 11, 6626–6632 (2021).Article 
CAS 

Google Scholar 
Goebel, J. F., Zeng, Z. & Gooßen, L. J. Biaryl synthesis via electrooxidative transition-metal-catalyzed C–H activation. Synthesis 54, 565–569 (2022).Article 
CAS 

Google Scholar 
Lang, F. M. et al. Intepirdine as adjunctive therapy to donepezil for mild‐to‐moderate Alzheimer’s disease: A randomized, placebo‐controlled, phase 3 clinical trial (MINDSET). Alzheimer’s Dement. 7, e12136 (2021).Article 

Google Scholar 
Stevens, T. et al. AZD9668: pharmacological characterization of a novel oral. Inhibitor Neutrophil Elastase. J. Pharmacol. Exp. Ther. 339, 313–320 (2011).Article 
CAS 
PubMed 

Google Scholar 
Solberg, N. T. et al. TANKYRASE inhibition enhances the antiproliferative effect of PI3K and EGFR inhibition, mutually affecting β-CATENIN and AKT signaling in colorectal cancer. Mol. Cancer Res. 16, 543–553 (2018).Article 
CAS 
PubMed 

Google Scholar 
Suzuki, T. & Yamato, S. Oxazosulfyl, a novel sulfyl insecticide, binds to and stabilizes the voltage-gated sodium channels in the slow-inactivated state. J. Agric. Food Chem. 69, 4048–4055 (2021).Article 
CAS 
PubMed 

Google Scholar 
Dong, B., Shen, J. & Xie, L.-G. Recent developments on 1,2-difunctionalization and hydrofunctionalization of unactivated alkenes and alkynes involving C–S bond formation. Org. Chem. Front. 10, 1322–1345 (2023).Article 
CAS 

Google Scholar 
Tran, G., Hesp, K. D., Mascitti, V. & Ellman, J. A. Base‐controlled completely selective linear or branched rhodium(I)‐catalyzed C−H ortho‐alkylation of azines without preactivation. Angew. Chem. Int. Ed. 56, 5899–5903 (2017).Article 
CAS 

Google Scholar 
Laha, J. K. & Sharma, S. Palladium-catalyzed intramolecular oxidative arylations for the synthesis of fused biaryl sulfones. ACS Omega 3, 4860–4870 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bai, J. et al. Radical anion promoted chemoselective cleavage of Csp2–S bond enables formal cross-coupling of aryl methyl sulfones with alcohols. Org. Lett. 23, 5761–5765 (2021).Article 
CAS 
PubMed 

Google Scholar 
McLaughlin, C., Bitai, J., Barber, L. J., Slawin, A. M. Z. & Smith, A. D. Catalytic enantioselective synthesis of 1,4-dihydropyridines via the addition of C(1)-ammonium enolates to pyridinium salts. Chem. Sci. 12, 12001–12011 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Puleo, T. R., Klaus, D. R. & Bandar, J. S. Nucleophilic C–H etherification of heteroarenes enabled by base-catalyzed halogen transfer. J. Am. Chem. Soc. 143, 12480–12486 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhou, S. et al. Direct synthesis of N-difluoromethyl-2-pyridones from pyridines. J. Org. Chem. 86, 6879–6887 (2021).Article 
CAS 
PubMed 

Google Scholar 
Zhou, S. et al. Metal-free difunctionalization of pyridines: selective construction of N-CF2H and N-CHO dihydropyridines. Org. Lett. 23, 2205–2211 (2021).Article 
CAS 
PubMed 

Google Scholar 
Sano, Y., Osato, N. & Nishimoto, A. Nitrogen-containing condensed heterocyclic compound having an oxime group, agricultural or horticultural herbicide comprising the compound, and method for using the compound or the herbicide. US patent 20230357210 (2023).Emmett, E. J., Hayter, B. R. & Willis, M. C. Palladium‐catalyzed three‐component diaryl sulfone synthesis exploiting the sulfur dioxide surrogate DABSO. Angew. Chem. Int. Ed. 52, 12679–12683 (2013).Article 
CAS 

Google Scholar 
Zhao, J. et al. A class of amide ligands enable Cu-catalyzed coupling of (hetero)aryl halides with sulfinic acid salts under mild. Cond. J. Org. Chem. 83, 6589–6598 (2018).Article 
CAS 

Google Scholar 
Jiang, S. et al. Visible-light mediated cross-coupling of aryl halides with sodium sulfinates via carbonyl-photoredox/nickel dual catalysis. Org. Chem. Front. 9, 1437–1444 (2022).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles